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Abstract

Information designers, such as large language models and online platforms, often do not

know the subjective beliefs of their receivers or users. We construct learning algorithms en-

abling the designer to learn the receiver’s belief through repeated interactions. Our learning

algorithms are robust to the receiver’s strategic manipulation of the learning process of the

designer. We study regret relative to two benchmarks to measure the performance of the al-

gorithms. The static benchmark is T times the single-period optimum for the designer under

a known belief. The dynamic benchmark, which is stronger, characterizes global dynamic

optimality for the designer under a known belief. Our learning algorithms allow the designer

to achieve no regret against both benchmarks at fast convergence speeds of O( log
2 T
T ), signifi-

cantly faster than other approaches in the literature.
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1 INTRODUCTION

An information designer (the designer; she) sends signals about an unknown state to steer the ac-
tion of a receiver (he) in her favor. Designing the optimal signaling strategy requires the designer
to know the receiver’s prior belief over states. Canonical economic models (e.g., Kamenica and
Gentzkow, 2011) assume the parties share a common prior. In many applications, however, the de-
signer has limited knowledge of the receiver’s belief. In this paper, we design learning algorithms
for the designer such that the designer learns the belief of a strategic receiver through repeated
interactions and designs approximately optimal signaling schemes.

For example, consider a large language model (LLM) API platform (the designer) that provides
a business user (the receiver) with access to LLMs through Application Programming Interfaces
(APIs). The LLM API platform charges the user based on the amount of tokens consumed to
handle the user’s request. The request may be solvable or unsolvable (the state), which can only
be observed by the platform. After the user submits a request, the platform observes its condition
and decides how to signal to the user, e.g., recommending the user to proceed for more details
or admitting its inability to solve the request. Upon receiving the signal, the user updates his
belief about whether his request is solvable, and then takes an action to maximize his payoff, such
as obeying the platform’s recommendation to proceed or stopping the interaction. The platform
always prefers that the user proceed to gain payment from the user for the token consumption,
regardless of the state. On the user’s side, his payoff is the highest when he pays for tokens that
truly solve his request and the lowest when he pays for tokens that generate unwanted content,
such as hallucinations.

The user has a subjective prior belief about the states, but the platform may not know that belief.
As a result, the limited knowledge of the user’s belief fundamentally constrains the platform from
designing the optimal signaling scheme. In addition, the user may choose deceptive actions in
some periods on purpose to manipulate the platform’s learning of his prior belief and further the
platform’s design of the signaling scheme in favor of the user himself.

Motivated by such scenarios, we study an information design problem where the prior belief of
the receiver is unknown to the designer and the receiver is strategic. Standard economic models,
when tackling the problem of an unknown belief, would assume that the designer has a belief
over possible prior beliefs of the receiver (e.g., Alonso and Câmara, 2016; Kolotilin et al., 2017).
However, such an approach suffers from several concerns, such as computational hardness. A
detailed discussion of the drawbacks of such an approach is presented in the literature review in
detail.

Are there near-optimal signaling strategies for the designer when she does not know the prior
belief of a strategic receiver? Our main contribution is to construct approximately optimal sig-
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naling schemes which enable the designer to learn that subjective prior from repeated interactions
with a strategic receiver. Moreover, our designer achieves such approximate optimality at effi-
cient speeds. In addition, the designer’s learning is robust to the receiver’s strategic manipulation.
Finally, such fast learning speeds are achieved against both a static benchmark and a dynamic
benchmark.

Specifically, we study a learning model where an information designer (e.g., the LLM plat-
form) learns to design signaling schemes over T periods based on historical interactions with a
long-lived receiver (e.g., a business user). The designer does not know the belief of the receiver.
In each period, the designer chooses a signaling scheme, which maps a state i.i.d. sampled from
a true distribution over the states to a randomized signal. Upon receiving the signal, the receiver
updates his belief about the state and takes an action. The payoffs of the two players are then
realized. We design learning algorithms for the designer to improve the signaling schemes over
time, such that (1) the designer’s time-averaged payoff converges to optimum benchmarks and that
(2) the convergences are fast, while (3) being robust to strategic manipulation by the receiver.

The rate at which the designer’s payoff converges to the optimal objective depends on the
learning algorithm she employs. We measure the performance of the learning algorithm by a
general notion of regret: the difference between the designer’s time-cumulative actual payoffs and
an optimality benchmark, based on what the designer could achieve if she knew the receiver’s
belief. We first characterize different regret benchmarks for the problem of an unknown prior
belief in a learning model. The static benchmark is T times the single-period optimum for the
designer had the designer known the receiver’s belief. The static regret is defined against the static
benchmark. This allows us to relate our results to the results of the canonical information design
models in Kamenica and Gentzkow (2011).

In addition, we consider a dynamic benchmark that measures the designer’s global dynamic
optimality under a known belief, which is stronger than the static benchmark. The dynamic regret

is then defined against the dynamic benchmark. A learning algorithm is called no-regret if its
regret grows sublinearly with time (alternatively, its time-averaged regret converges to zero). The
rate at which the time-averaged regret declines reflects the learning algorithm’s efficiency. We aim
to design learning algorithms that not only achieve no regret against the two benchmarks, but do so
as efficiently as possible, yielding fast convergence to optimality under the unknown belief while
being robust to the receiver’s strategic manipulation.

Our first main result is an O(log2 T ) upper bound on the static regret. Our second main result
is also an O(log2 T ) regret upper bound on the dynamic regret. We design two learning algorithms
to ensure that, for any problem instance, the designer’s regrets for T periods, relative to the static

benchmark and the dynamic benchmark, respectively, are both no more than a constant times log2 T
for all T . Both regret upper bounds imply convergence rates of O( log

2 T
T

) for the designer’s regret to
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converge to zero, which are significantly faster than other approaches in the literature, as discussed
later.

Both of our two learning algorithms contain two phases. The first phase is the learning of the
receiver’s belief, which has the same learning logic under two regret benchmarks. The learning
of the belief is based on binary search. The key idea is to learn the unknown belief from the
receivers’ actions. To see the intuition, consider two states and two actions, where the receiver
prefers different actions in the two states. For the moment, suppose the receiver is myopic in the
sense that he does not consider the future in choosing his action. Then, the designer can compute
a cutoff belief such that the receiver is indifferent between the two actions. The actual action
chosen by the receiver then reveals whether the receiver’s belief is below or above the cutoff. By
observing the receiver’s action, the designer gradually narrows down the range of possible values
for the prior. That process does not stop until the designer obtains a sufficiently accurate estimate
of the prior belief. Our formal analysis shows how to generalize that intuition to multiple states
and multiple actions.

How does the designer do this when the receiver is not myopic? The algorithm repeats the
same signaling scheme that sends the designated signal for a fixed number of periods. First, the
repetition and the receiver’s discount factor ensure that the receiver cannot gain more by acting
deceptively in a single round. The same signaling scheme will be repeatedly used multiple times,
which reduces the incentive for the receiver to misbehave. Second, the algorithm only cares about
the action taken by the receiver when he first observes that certain signal. In that way, the update
for the signaling scheme used in the next series of repetition will be influenced by the receiver’s
actions in the current series of repetition to the least extent. Thus, the information collected about
the receiver’s belief stays reliable to the largest extent, helping the designer learn the receiver’s
belief effectively.

The second phase, where our learning algorithms for the two benchmarks differ, is robustifica-

tion. The signaling scheme that is optimal for the designer under the belief estimate is converted
into another signaling scheme that is approximately optimal under the receiver’s belief. The mo-
tivation is that even if two prior beliefs are very close, the signaling scheme optimal under one
belief may perform arbitrarily badly under the other, leaving no guarantee on the designer’s pay-
off. However, the robustification varies across benchmarks. Our first learning algorithm uses static

robustification, where the robustification process is performed on the signaling scheme optimal
for the belief estimate once to obtain a robustified signaling scheme for being repeatedly used for
future periods.

Our second learning algorithm applies a dynamic robustification to the designer’s globally op-
timal strategy, where the signaling schemes in different periods are carefully chosen, so that the
receiver at any period is still incentivized to participate in the future. The challenge is that the
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static robustification may backfire: the static robustification only increases the persuasiveness of
the signaling scheme, namely, increasing the positive gap of the expected payoff from the rec-
ommended action relative to that from any other actions. However, the static robustification may
lower the receiver’s ex ante (before a recommendation is sent) expected payoff from obeying the
recommendations in the future. Thus, after an action is recommended by a statically robustified
signaling scheme, the receiver’s incentive to obey that current recommendation becomes stronger,
but his ex ante payoff from obeying recommendations in future periods may get worse, potentially
violating the receiver’s participation constraint.

To overcome this, we propose a new type of robustification, payoff-improving robustification,
which weakly increases the receiver’s ex ante payoff from being obedient. We then take the
designer’s optimal dynamic signaling strategy, given her belief estimate, and apply the payoff-
improving robustification procedure to each period’s signaling scheme in that dynamic strategy.
We show that the resulting dynamic strategy is persuasive for the receiver and approximately opti-
mal for the designer.

The superiority of both of our learning algorithms is reflected by the logarithmic upper bounds
on their regrets: O(log2 T ). That means that the designer’s average payoff converges to the opti-
mality benchmarks at a fast speed, in the order of O( log

2 T
T

). In contrast, an intuitive method is to
use an empirical estimation: counting the state revealed at the end of each period for obtaining an
empirical estimate of the state distribution. The empirical estimation does not work in our prob-
lem, since the true distribution over the states is not the same as the receiver’s subjective belief.
Even if the empirical estimation could be applied, it would suffer a regret of at least O(

√
T ) due

to sampling error, which is exponentially worse than the O(log2 T ) regret bound of our learning
algorithms. Our algorithms circumvent the limitation of empirical estimation and achieve an expo-
nential improvement by actively learning the receiver’s belief from his actions, instead of learning
from sampled states passively.

1.1 RELATED WORK

First, this paper contributes to the literature on robust information design under uncertainty, espe-
cially when the designer lacks knowledge of the receiver’s prior belief. Classical models such as
Bayesian persuasion (Kamenica and Gentzkow, 2011; Bergemann and Morris, 2016) and cheap
talk (Crawford and Sobel, 1982) typically assume a common prior shared by the designer and the
receiver. Recent work relaxes this by introducing uncertainty over the prior. One approach assumes
the designer holds a belief over the unknown prior (e.g., Kolotilin et al., 2017), but computing the
optimal signaling scheme is generally intractable (Hossain et al., 2024). Another approach, rooted
in robust mechanism design, has the designer optimize against a worst-case prior in a given set
(e.g., Hu and Weng, 2021; Dworczak and Pavan, 2022; Kosterina, 2022; Dworczak and Kolotilin,
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2024; Ball and Kattwinkel, 2025). These papers typically study a single-shot game, limiting the
designer’s ability to learn over time. Of course, when the designer has the opportunity to learn,
one expects she may achieve a much higher payoff. In contrast, we design learning algorithms that
infer the prior, achieving near optimality quickly while avoiding computational hardness.

Departing from the standard approach for addressing the robustness, Li and Lin (2025) study
how to learn the belief of a sequence of short-lived receivers from their actions. However, if a
receiver interacts with the platform repeatedly, thus becoming long-lived, then he will be incen-
tivized to be strategic. Thus, he may take actions to convey deceptive information about his belief,
manipulating the platform’s learning in a direction favorable to them but unfavorable to the plat-
form.

There are also papers that address robustness from other perspectives. Mathevet, Perego, and
Taneva (2020), Morris, Oyama, and Takahashi (2024), and Ziegler (2020) study the designer’s
strategy from an adversarial perspective in one-shot games. Li and Norman (2021) analyze se-
quential games from the adversarial perspective but maintain a common prior. In these papers,
either a common prior is assumed or the model is one-shot, whereas our paper tackles both a learn-
ing process and an unknown prior. Ball (2023) consider a dynamic information design problem
in which the beliefs of the designer and the receiver are different. However, their model uses
persistent states while we consider i.i.d. states. More importantly, they consider both players to
be equally patient, while we consider a patient designer and an impatient receiver. The different
patience levels in our paper have crucial influence on their dynamic strategies and the designer’s
regret benchmarks. Besides, they assume more structure on the dynamic process and the players’
payoffs, while our work keep the dynamic process and the payoff functions general without further
structures.

Our work also contributes to the literature on online Bayesian persuasion, which studies learn-
ing when some game parameters are unknown. Castiglioni et al. (2020), Castiglioni et al. (2021),
and Feng, Tang, and Xu (2022) consider unknown receiver utilities; Zu, Iyer, and Xu (2021) and
Wu et al. (2022) focus on unknown priors; and Bacchiocchi et al. (2024) allow both utilities and
priors to be unknown. Previous approaches to unknown priors rely on empirical estimation and
incur Ω(

√
T ) regret due to sampling error. This option is not available here as the designer needs

to learn the receiver’s belief, not the true distribution. We bypass this by using best responses to
infer the prior more efficiently, achieving O(log2 T ) regret. Camara, Hartline, and Johnsen (2020)
also study information design with learning agents but drop distributional assumptions and allow
adversarial state sequences; their regret notion therefore differs from ours, which assumes i.i.d.
states from an unknown objective prior.

Our work also connects to the line of works on misspecified learning (Ba, 2023; Bohren and
Hauser, 2021; Frick, Iijima, and Ishii, 2023; Esponda, Pouzo, and Yamamoto, 2021; Fudenberg,
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Lanzani, and Strack, 2021; Fudenberg, Romanyuk, and Strack, 2017) and on the long-run out-
comes of misspecified Bayesian agents who cannot obtain the true distribution over states (e.g.,
Tversky and Kahneman (1973), Rabin and Schrag (1999), Fudenberg and Lanzani (2023), and
He and Libgober (2021)). Those works study belief convergence and actions in general learning
environments. However, we consider a receiver whose belief is already the convergence outcome
of his misspecified learning. We neglect the process by which such a belief is formed, focusing
instead on how the designer interacts with a receiver whose belief has already converged.

2 MODELS AND PRELIMARIES

2.1 MODELS

Single-period game. We first define a single-period game of information design (Bayesian per-
suasion) with subjective prior beliefs. There is a finite set of states of the world Ω. The information
designer and the receiver have subjective prior beliefs µD, µR ∈ ∆(Ω) over the states, respectively,
where ∆(Ω) denotes the set of probability distributions over Ω. We think of µD as the true dis-
tribution over the states and µR as a subjective prior belief over the states, which may not be the
same as the true distribution. The designer is better informed about the true distribution from ac-
cess to sufficient state observation data, so the designer is assumed to know the true distribution.
The receiver’s prior µR can be different from the true distribution, which may be the convergence
outcome of the learning process of a misspecified belief (e.g., Fudenberg, Romanyuk, and Strack
(2017)).

The receiver has a finite set of actions A. The designer and the receiver have payoff functions
u, v : A × Ω → [0, 1], respectively. This single-period game is summarized by an instance I =

(Ω, A, u, v, µD, µR).
At the beginning of the game, the designer announces a signaling scheme π : Ω → ∆(S),

which maps each state to a probability distribution over a finite set of signals S. Let Π = Ω →
∆(S) be the set of signaling schemes. The receiver believes that the state is drawn according to
the distribution µR. Thus, after receiving a signal s ∼ π(·|ω) sampled according to state ω and the
signaling scheme π, the receiver obtains his posterior belief µR(ω)π(s|ω)∑

ω′∈Ω µR(ω′)π(s|ω′)
, ∀ω ∈ Ω, and takes

an action in response. Let ρ : S → ∆(A) be a possibly randomized single-period strategy of the
receiver. Under a pair of strategies (π, ρ), the expected payoffs of the designer and the receiver in
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the single-period game are, respectively,

U(π, ρ;µD) =
∑
ω∈Ω

µD(ω)
∑
s∈S

π(s|ω)
∑
a∈A

ρ(a|s)u(a, ω), (1)

V (π, ρ;µR) =
∑
ω∈Ω

µR(ω)
∑
s∈S

π(s|ω)
∑
a∈A

ρ(a|s)v(a, ω). (2)

We say the receiver myopically best responds1 if he maximizes his single-period payoff by
choosing a strategy

ρ∗ ∈ argmax
ρ:S→∆(A)

V (π, ρ)

or, equivalently, an action ρ∗(s) ∈ argmaxa∈A µR(ω)π(s|ω)v(a, ω) given each signal s ∈ S based
on his posterior belief. With a myopically best-responding receiver, the optimal utility of the
designer is

U∗
BP(I) := max

π∈Π
max

ρ∈argmaxS→∆(A) V (π,ρ;µR)
U(π, ρ;µD). (3)

We call U∗
BP(I) the Bayesian persuasion benchmark.

T -period learning process. We consider the T -period repetitions of the above single-period
game with an instance I = (Ω, A, u, v, µD, µR). Importantly, the designer now does not know
the receiver’s prior belief µR but she knows other parameters u, v, µD. In particular, the designer
learns to design signaling schemes using an algorithm G which, at every period t, maps the history
H(t−1) ∈ Π(t−1) × S(t−1) × A(t−1) to a signaling scheme π(t) ∈ Π for the current period. In
response to the learning algorithm G, the receiver chooses a T -period strategy ϕ = (ϕ(t))Tt=1 where
each ϕ(t) maps the history H(t−1) ∈ Π(t−1) × S(t−1) × A(t−1) and the current period’s signaling
scheme π(t) ∈ Π to a strategy ρ(t) : S → ∆(A) that specifies a randomized action for each possible
signal. Then, the pair of strategies (G, ϕ) will generate a stochastic sequence of (π(t), ρ(t))Tt=1 of
the designer’s signaling schemes and the receiver’s single-period strategies. We assume that the
receiver is impatient in the sense that he has a discount factor γ ∈ (0, 1), so his total discounted
expected payoff is

VT (G, ϕ;µR) = E(π(t),ρ(t))Tt=1∼(G,ϕ)

[ T∑
t=1

γt · V (π(t), ρ(t);µR)

]
. (4)

1We use “myopic best response” to distinguish from the best response of a strategic receiver in the T -period game.
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The designer, on the other hand, is patient, that is, having a discount factor of one. The designer
aims to maximize her total expected payoff

UT (G, ϕ;µD) = E(π(t),ρ(t))Tt=1∼(G,ϕ)

[ T∑
t=1

U(π(t), ρ(t);µD)

]
. (5)

We consider a strategic (or long-lived) receiver who best responds to the designer’s learning
algorithm G. Formally, given the algorithm G and the belief µR, the receiver chooses a globally
optimal strategy

ϕ∗(G, µR) = argmax
ϕ

VT (G, ϕ;µR).

Then, the designer obtains her total expected payoff

UT (G, ϕ∗(G, µR);µD).

Remark 1. The assumption that the designer is more patient than the receiver is commonly seen

in real-world problems. As a high-level intuition, the designer represents a principal, a platform,

or a social planner, etc. Thus, the designer is long-lived and patient. The receiver may be an agent

or a user, who can be long-lived but impatient. We discuss how the results change if the designer

is impatient in Section 6. Technically, if the designer is impatient (with a discount factor less than

one), then she will only care about the early periods instead of the whole learning process. In

that way, the designer will obtain a total payoff sublinear in T , thus making her achieve a regret

sublinear in T (to be formally defined below) trivially. What’s even worse, the designer may have

already started to neglect her continuing payoffs before finishing learning the receiver’s belief. If

the receiver is patient (with his discount factor γ = 1), then the designer cannot achieve sublinear

regret regardless of the learning algorithm, as we show in Section 6. If the receiver is patient, then

their payoffs under the designer’s dynamic benchmark will not oscillate over time, as shown in

Section 4.

Benchmarks and regrets. The regret of the designer under instance I = {Ω, A, u, v, µD, µR}
is the difference between a benchmark U∗

T (I) and the actual payoff UT that the designer obtains
by using the algorithm G over the T periods. In particular, we will consider two benchmarks for
defining the regret.

The first benchmark is the static benchmark denoted by U∗
BP(I), which is T times the single-

period Bayesian persuasion benchmark at a problem instance I.

U∗
T (I) := T · U∗

BP(I).
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The static benchmark is a natural benchmark to consider, especially for measuring how good the
performance of our learning algorithm is compared to the Bayesian persuasion optimality in the
canonical work (Kamenica and Gentzkow, 2011), in which the designer knows the receiver’s prior
µR.

We call the regret against the static benchmark static regret:

Regstatic(T ;G, I) = U∗
T (I) − UT (G, ϕ∗(G, µR);µD). (6)

The second benchmark, the dynamic benchmark, is the maximal T -period payoff the designer
could obtain had the designer known the receiver’s belief µR and the receiver best responded over
the T periods. We denote this by U∗∗

T (I) at a problem instance I.

U∗∗
T (I) := max

T -period strategy σ
UT (σ, ϕ

∗(σ, µR);µD),

where σ is a T -period strategy of the designer that designs signaling schemes based on historical
information and the receiver’s belief µR.2

We call the regret against the dynamic benchmark dynamic regret:

Regdynamic(T ;G, I) = U∗∗
T (I) − UT (G, ϕ∗(G, µR);µD). (7)

As we will show in Section 4, the dynamic benchmark U∗∗
T (I) is always weakly larger than the

static benchmark U∗
T (I). Thus, achieving no regret against the dynamic benchmark automatically

implies no regret against the static benchmark.
A regret upper bound is a performance guarantee of an algorithm G in the following way: for

any problem instance I, that is, for any unknown belief µR, the regret incurred by the algorithm G
grows no faster than some function of T , i.e.,

Reg(T ;G, I) ≤ CI · f(T ) = O(f(T )), ∀T, ∀I,

where CI is a constant depending on I but not on T . Here, f(T ) represents the worst-case rate at
which the regret can grow. An algorithm G with regret upper bound O(f(T )) is no-regret if f(T )
grows at a rate that is sublinear with T , that is,

lim
T→∞

f(T )

T
→ 0.

2We assume tie-breaking in favor of the designer if the receiver has multiple best responses. However, our results
guarantee that obedience is the unique best response for the receiver.
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For example, the worst-case rate f(T ) can be f(T ) =
√
T or f(T ) = log T .

2.2 REGULARITY ASSUMPTIONS

We present two regularity assumptions used throughout the paper. First, we assume that the beliefs
µD, µR have full support and the designer knows the minimum probability p0 > 0 of any state. This
probability p0 will be used by the designer for designing the algorithms later.

Assumption 1 (Full-support priors). Both players’ prior beliefs µD, µR ∈ ∆(Ω) have full support

and there exists p0 ∈ (0, 1) such that the designer knows

min
ω∈Ω

µR(ω) ≥ p0 > 0.

Assumption 2 (Regularity of receiver’s utility). There is no weakly dominated action for the re-

ceiver.

Assumption 2 implies that there exists a positive number D > 0 such that, for every action
a ∈ A of the receiver, there exists a belief ηa ∈ ∆(Ω) on which action a is strictly better than any
other action by a margin of D:

Eω∼ηa [v(a, ω)] ≥ Eω∼ηa [v(a
′, ω)] +D, ∀a′ ∈ A \ {a}. (8)

The designer knows D since she knows the receiver’s utility function v.

3 LEARNING TO ACHIEVE NO REGRET AGAINST THE STATIC BENCHMARK

We will design a learning algorithm for the designer to achieve a regret upper bounded by O(log2 T )

against the static benchmark. The learning algorithm contains two parts: one is the learning of the
receiver’s belief, which will be used again in the later section for dynamic regret. The other is a
static robustification process for obtaining a near-optimal signaling scheme from the learned belief.

3.1 EFFICIENT LEARNING OF THE STRATEGIC RECEIVER’S BELIEF

The information designer learns the receiver’s belief µR through observing his actions.
Denote by a∗ω = argmaxa∈A v(a, ω) the receiver’s optimal action in state ω ∈ Ω. We present a

natural and mild assumption on the receiver’s utility function v as follows.

Assumption 3 (Unique optimal action). The optimal action a∗ω for the receiver in each state ω ∈ Ω

is unique.

13



Since the number of states is finite, Assumption 3 immediately implies that there exists a posi-
tive constant G > 0 such that

∀ω ∈ Ω, ∀a ∈ A \ {a∗ω}, v(a∗ω, ω)− v(a, ω) > G > 0.

Since the designer knows the utility functions, she knows this constant G.
We learn the receiver’s belief µR ∈ ∆(Ω) by learning the ratio µR(ωi)

µR(ωj)
of µR for any pair of states

ωi, ωj ∈ Ω. First, we show how to learn that ratio when the receiver has different optimal actions
a∗ωi

, a∗ωj
under the pair of states ωi, ωj , respectively. We call such a pair of states distinguishable,

and assume that there exists at least one such pair of states.

Assumption 4 (Distinguishable states). There exist at least one pair of states ωi, ωj ∈ Ω whose

corresponding receiver-optimal actions are different: a∗ωi
̸= a∗ωj

.

Assumption 4 makes the designer’s learning problem non-trivial. If Assumption 4 does not
hold, then the receiver would have the same optimal action a∗ across all states. Thus, regardless
of the signaling scheme and the belief, the receiver would always take action a∗, and the expected
payoff of the designer would be a constant, leaving the designer zero regret trivially.

Algorithm 1 shows how to estimate the receiver’s prior belief ratio µR(ωi)
µR(ωj)

for any pair of dis-
tinguishable states ω1 and ω2 based on binary search. The designer uses a signaling scheme π

that sends a certain signal s0 only under states ωi and ωj , that is, π(s0|ω) > 0 for ω = ωi, ωj and
π(s0|ω) = 0 for ω ̸= ωi, ωj . Then the receiver will believe that the state must be either ωi or ωj

upon receiving signal s0. In particular, the ratio of the receiver’s posterior belief about those two
states is

µ(ωj|s0)
µ(ωi|s0)

=
µR(ωj)

µR(ωi)

π(s0|ωj)

π(s0|ωi)
, (9)

which depends on the receiver’s prior belief µR and the signaling scheme π used by the designer.
The receiver takes an action based on this posterior belief to maximize his total payoff from the
current and future periods. Based on the receiver’s action, the designer then updates the signaling
scheme for the next period. That process iterates until the designer obtains an estimate of the
receiver’s prior belief ratio µR(ωi)

µR(ωj)
with a desired accuracy.

To learn the belief ratio of a strategic receiver, it is useful to first understand how to learn that
ratio if the receiver best responds to the signaling scheme π myopically, that is, if the receiver max-
imizes his payoff only in the current period. If the receiver’s prior belief ratio µR(ωj)

µR(ωi)
is sufficiently

small, then his posterior belief ratio (9) will also be small. Thus, the receiver will believe that the
state is ωi with high probability and take the corresponding optimal action a∗ωi

. On the other hand,
if the receiver’s prior belief ratio µR(ωj)

µR(ωi)
is very large, then he will believe that the state is ωj with
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high probability and take the corresponding optimal action a∗ωj
. In between, there is a range for the

ratio µR(ωj)

µR(ωi)
, where the receiver might take neither action but a completely different action.

Therefore, given the signaling scheme π and a pair of distinguishable states, there exists a cutoff

threshold c(π, ωi, ωj) on the receiver’s prior belief ratio such that the receiver is indifferent in taking
action a∗ωi

versus some other action ãωj ,ωi
, which might or might not be a∗ωj

. Thus, the receiver
takes action ãωj ,ωi

when his prior belief ratio µR(ωj)

µR(ωi)
is above the cutoff threshold c(π, ωi, ωj). As

explained above, ãωj ,ωi
is not necessarily a∗ωj

. We call such an action ãωj ,ωi
the first indifferent

action for the receiver under the signaling scheme π and a pair of distinguishable states ωi, ωj .
The cutoff threshold c(π, ωi, ωj) is the prior belief ratio µ(ωj)

µ(ωi)
that solves the following indifference

equation under the experimented signaling scheme π:

µ(ωj)π(s0|ωj)
(
v(a∗ωi

, ωj)− v(ãωj ,ωi
, ωj)

)
+ µ(ωi)π(s0|ωi)

(
v(a∗ωi

, ωi)− v(ãωj ,ωi
, ωi)

)
= 0

=⇒ c(π, ωi, ωj) =
µ(ωj)

µ(ωi)
=

π(s0|ωi)

π(s0|ωj)
·
v(a∗ωi

, ωi)− v(ãωj ,ωi
, ωi)

v(ãωj ,ωi
, ωj)− v(a∗ωi

, ωj)
.

The designer knows the threshold c(·, ·, ·) based on her knowledge about the receiver’s payoff
function v.

That enables the designer to use a binary search algorithm to identify a precise range containing
the receiver’s prior belief ratio µR(ωj)

µR(ωi)
. In particular, by observing whether the receiver takes action

a∗ωi
or not, the designer is able to tell whether the receiver’s actual prior belief ratio µR(ωj)

µR(ωi)
is below

or above the cutoff threshold c(π, ωi, ωj). That enables the designer to adjust the signaling scheme
and the corresponding cutoff threshold through iterations over time. By multiple iterations, the
designer narrows down the range of µR(ωj)

µR(ωi)
to length ε in O(log 1

ε
) steps.

We then study the case when the receiver is strategic. Being long-lived incentivizes the receiver
to take deceptive actions to manipulate the designer’s learning of his belief µR. We have two crucial
steps to make the designer’s learning robust to such strategic manipulation. First, our binary search
algorithm repeats the same signaling scheme π(k) in each iteration k for an additional number
of periods. With the discount factor, the repetition makes the receiver not gain much by acting
deceptively in one round, since the same signaling scheme will recur, and the effect of deception
will not occur immediately, but will occur only after some periods. Thus, any future benefit from
manipulation by deviating from the best response will be too small compared to the immediate loss
due to not best responding myopically. In that way, the repetition of the same signaling scheme
together with the influence of the discount factor incentivizes the receiver to act truthfully.

Second, we record the receiver’s action only the first time when the signal s0 appears and
ignore his actions in later repetitions. If we were to take into account the receiver’s actions in later
repetitions, in particular the repetitions near the end of the current iteration of binary search, then
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the receiver would have an increasingly strong incentive to manipulate, because there are fewer
and fewer repetitions left in the current iteration and the receiver’s actions in those tail periods will
have immediate effects on the designer’s update of the signaling scheme for the next iteration, say
k + 1. Recording the receiver’s action only in the first relevant repetition reduces the receiver’s
manipulation incentives and ensures the correctness of our prior learning algorithm.

Algorithm 1, based on the idea of binary search, formally shows how to learn the receiver’s
prior belief ratio µR(ωi)

µR(ωj)
for any pair of distinguishable states ωi, ωj when the receiver acts strategi-

cally.
Algorithm 1: Estimating Prior Ratio for Distinguishable States by Binary Search

Input : two states ωi, ωj whose receiver-optimal actions are different.
Parameter: a termination criterion τ > 0, and an integer m ≥ 1.
Output : an estimation ρ̂ of the ratio µR(ωi)

µR(ωj)
.

1 Let k = 0, ℓ(0) = 0, r(0) = 1
Gp0

.

2 Let a∗ωi
= argmaxa∈A v(a, ωi). Let ã be the first indifferent action ãωj ,ωi

.
3 while r(k) − ℓ(k) > τ do
4 Let q = ℓ(k)+r(k)

2
.

5 Let s0 be an arbitrary signal in S; let π(k) be a signaling scheme that satisfies
π(k)(s0|ωj)

π(k)(s0|ωi)
= q:

- if q ≤ 1, let π(k)(s0|ωj) = q, π(k)(s0|ωi) = 1;
- if q > 1, let π(k)(s0|ωj) = 1, π(k)(s0|ωi) = 1/q.
For ω ∈ Ω \ {ωi, ωj}, π(k)(s0|ω) = 0. For s ∈ S \ {s0}, π(k)(s|ω) can be arbitrary.

6 Repeat π(k) for multiple periods until signal s0 is realized. Let a(k) be the action taken
by the receiver when s0 is realized.

7 Repeat π(k) for additional m periods, while ignoring the receiver’s actions.
8 if a(k) = a∗ωi

then
9 Let ℓ(k+1) = q, r(k+1) = r(k).

10 else
11 Let r(k+1) = q, ℓ(k+1) = ℓ(k).
12 end
13 k = k + 1.

14 end
15 Output ρ̂ = ℓ(k) · v(ã,ωj)−v(a∗1,ωj)

v(a∗ωi
,ωi)−v(ã,ωi)

.

The performance of Algorithm 1 is characterized by Lemma 1, which shows that a good esti-
mate of µR(ωi)

µR(ωj)
can be obtained within a very short amount of time: Algorithm 1 requires at most

O(log T ) periods to reach a precision τ = O( 1
T
).
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Lemma 1. The output of Algorithm 1, ρ̂, satisfies
∣∣ρ̂ − µR(ωi)

µR(ωj)

∣∣ ≤ 1
G

(
τ + γm

(1−γ)G3p30

)
≤ 1

Gp0

(
τ +

γm

(1−γ)G3p30

)
µR(ωi)
µR(ωj)

, and Algorithm 1 terminates in at most ( 1
p0
+m) log2

1
Gp0τ

periods in expectation.

Proof. See Appendix B.1.

A key part in the proof of Lemma 1 is the following Lemma 2, which shows that the strategic
receiver is incentivized to perform consistently with single-period best responses if the signaling
scheme ratio estimate π(k)(s0|ωj)

π(k)(s0|ωi)
differs from the targeted ratio π∗(s0|ωj)

π∗(s0|ωi)
by a positive distance ι =

O(γm).

Lemma 2. Choose ι = γm

(1−γ)G2p20
. In Line 6 of Algorithm 1, when signal s0 is sent,

• if π(k)(s0|ωj)

π(k)(s0|ωi)
< (1− ι)

π∗(s0|ωj)

π∗(s0|ωi)
, then the receiver will take action a∗ωi

;

• if π(k)(s0|ωj)

π(k)(s0|ωi)
> (1 + ι)

π∗(s0|ωj)

π∗(s0|ωi)
, then the receiver will not take action a∗ωi

.

To see the intuition of Lemma 2, note that when recommended by a signal s0 according to
Algorithm 1, the strategic receiver is incentivized to take actions truthfully because his loss from
deviation is larger than his gain from deviation. Regarding the gain, the receiver’s accumulated
gain from deviating is upper bounded by a positive number due to his discounted factor. Regarding
the loss, the receiver’s loss is lower bounded by a positive number that depends on how close our
ratio estimate π(k)(s0|ωj)

π(k)(s0|ωi)
is from the targeted ratio π∗(s0|ωj)

π∗(s0|ωi)
, as well as the positive margin G by the

unique optimal action assumption (Assumption 3). Then, at a controlled distance of ratio estimate
π(k)(s0|ωj)

π(k)(s0|ωi)
from ratio π∗(s0|ωj)

π∗(s0|ωi)
, the receiver’s loss lower bound is strictly larger than his gain upper

bound, making him incentivized not to deviate from the recommendation.
As an illustration, Figure 4a shows the case of π(k)(s0|ωj)

π(k)(s0|ωi)
< (1−ι)

π∗(s0|ωj)

π∗(s0|ωi)
, in which the strategic

receiver is incentivized to take action a∗ωi
. The payoff brought by action a∗ωi

is the highest for that
case. Figure 4b shows the case of π(k)(s0|ωj)

π(k)(s0|ωi)
> (1 − ι)

π∗(s0|ωj)

π∗(s0|ωi)
, in which the strategic receiver is

incentivized not to take action a∗ωi
. The payoff brought by action a∗ωi

is no longer the highest.

Proof. See Appendix B.2.

What if the receiver-optimal actions of a pair of states are the same? Algorithm 2 deals with
such a case, allowing the information designer to estimate the prior ratio between any pair of states.
The idea of Algorithm 2 is that, if states ωi and ωj have the same receiver-optimal actions, then
both of them must be distinguishable from one state in a distinguishable pair of states, say ωk ∈ Ω,
by Assumption 4. Thus, we obtain the estimate of µR(ωi)

µR(ωj)
by estimating the ratios µR(ωi)

µR(ωk)
and µR(ωj)

µR(ωk)

separately.
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(a) The case of π(k)(s0|ωj)

π(k)(s0|ωi)
< (1− ι)

π∗(s0|ωj)
π∗(s0|ωi)

(b) The case of π(k)(s0|ωj)

π(k)(s0|ωi)
> (1 + ι)

π∗(s0|ωj)
π∗(s0|ωi)

Figure 1: Normalized utility of the receiver for different actions. The x-coordinate is the signaling
ratio π(s0|ωj)

π(s0|ωi)
. Each line corresponds to an action a, with equation

ya(x) = v(a, ωi) +
µR(ωj)

µR(ωi)
· x · v(a, ωj).

Algorithm 2: Estimating Belief Ratio for any Pair of States (ωi, ωj)

Parameter: τ > 0 and m ≥ 1

1 If ωi and ωj are distinguishable, i.e., a∗ωi
̸= a∗ωj

, then run Algorithm 1 on ωi and ωj .
2 Otherwise, i.e., a∗ωi

= a∗ωj
, find ωk ∈ Ω such that a∗ωk

̸= a∗ωi
= a∗ωj

. Run Algorithm 1 to
obtain an estimate ρ̂ik for µR(ωi)

µR(ωk)
and an estimate ρ̂jk for µR(ωj)

µR(ωk)
. Return ρ̂ij =

ρ̂ik
ρ̂jk

.

Full algorithm for learning the belief µR. After showing how to learn the belief ratio for any
pair of states, we now present the full algorithm in Algorithm 3 for the designer to learn the
receiver’s belief µR. Algorithm 3 first uses Algorithm 2 to learn the ratio µR(ωi)

µR(ω1)
for each state ωi,

i = 2, . . . , |Ω| and state ω1, and then reconstructs the estimate of the unknown belief from those
ratio estimates.

Algorithm 3: Learning the Belief of the Strategic Receiver
Parameter: desired estimation accuracy ε > 0

1 Let τ =
Gp30ε

24|Ω| ,m =
⌈

1
ln(1/γ)

ln( 24|Ω|
(1−γ)G4p60ε

)
⌉

.

2 For every state ωi ∈ Ω, i = 2, . . . , |Ω|, apply Algorithm 2 to state pair (ωi, ω1) with
parameters τ and m to learn the ratio µR(ωi)

µR(ω1)
, obtaining ratio estimate ρ̂i1.

3 Return belief estimate µ̂ ∈ ∆(Ω) by

µ̂(ω1) = 1/
(
1 +

∑|Ω|
i=2 ρ̂i1

)
;

µ̂(ωi) = ρ̂i1µ̂(ω1), for i = 2, . . . , |Ω|.
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Algorithm 3 gives a belief estimate µ̂ with an ℓ1 distance precision ε at ∥µ̂− µR∥1 ≤ ε within
a short running time of O(log2 1

ε
) periods.

Lemma 3. Given 0 < ε ≤ 1,

• the belief estimate µ̂ from Algorithm 3 satisfies ∥µ̂− µR∥1 ≤ ε;

• the expected running time of Algorithm 3 is at most 2|Ω|
(

1
p0
+ 1

1−γ
ln( 24|Ω|

(1−γ)G4p60ε
)
)
log2

24|Ω|
G2p40ε

periods.

Proof. See Appendix B.3.

3.2 STATIC ROBUSTIFICATION OF SIGNALING SCHEMES

Computing the signaling scheme optimal for a belief. In general, given any prior belief µ0 ∈
∆(Ω) of the receiver, assumed to be known to the designer, the optimal signaling scheme in the
static Bayesian persuasion problem can be computed easily.

In particular, given any prior belief µ0 ∈ ∆(Ω) known to be the receiver’s belief, there exists
a signaling scheme π0 that is direct and persuasive (Kamenica and Gentzkow, 2011) under µ0: a
signaling scheme π : Ω → ∆(A) is direct if it maps each state to a probability distribution over
actions; a direct signaling scheme π0 is persuasive if all actions recommended by π0 are optimal
for the receiver under prior µ0:

∑
ω µ0(ω)π0(a|ω)

[
v(a, ω)− v(a′, ω)

]
≥ 0,∀a, a′ ∈ A. Denote by

Pers(µ0) the set of persuasive signaling schemes given the receiver’s belief µ0 ∈ ∆(Ω):

Pers(µ0) :=
{
π : Ω → ∆(A)

∣∣ ∑
ω∈Ω

µ0(ω)π(a|ω)
[
v(a, ω)− v(a′, ω)

]
≥ 0, ∀a, a′ ∈ A

}
, (10)

where ∑
ω∈Ω

µ0(ω)π0(a|ω)
[
v(a, ω)− v(a′, ω)

]
∀a, a′ ∈ A

is the persuasiveness of the signaling scheme π under the receiver’s belief µ0.
The signaling scheme optimal for the designer with µD under her knowledge of the receiver’s

belief µ0 is solved tractably from the following linear program

π∗(µ0) = argmax
π∈Pers(µ0)

∑
ω∈Ω

µD(ω)
∑
a∈A

π(s|ω)u(a, ω). (11)

Thus, if the designer knows the receiver’s belief µR, then the designer will obtain her optimal
signaling scheme π∗ for µR exactly by the linear program 11. However, after the learning phase,
the designer has a learned belief µ̂, which is only an approximation for the receiver’s prior belief
µR.
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Static robustification. After the first phase of learning, we have obtained an estimate µ̂ of the
receiver’s prior belief µR. However, even when the estimate µ̂ is very close to the prior belief µR,
the signaling scheme π̂ optimal for the designer under the estimate µ̂ may not be persuasive or
even perform arbitrarily badly under µR. The reason is that even though a signal s may induce two
close posterior beliefs from two close prior beliefs µ̂ and µR, respectively, the optimal actions for
the receiver under those two posterior beliefs may be different, which may lead to an arbitrarily
low payoff for the designer under the receiver’s prior belief µR.

We propose designing a signaling scheme π using static robustification. In general, we convert
any direct signaling scheme π under µ̂ to another signaling scheme π̃, such that π̃, when applied
to a targeted prior belief (e.g., the receiver’s prior µR), will have a weakly higher persuasiveness
compared to the case when that typical signaling scheme π is applied to the belief estimate µ̂.
Recall that the persuasiveness of a direct signaling scheme under a prior belief measures how any
recommended action from that signaling scheme is weakly better than any other unrecommended
action. That is, here we have for any a, a′ ∈ A,∑

ω

µR(ω)π̃(a|ω)[v(a, ω)− v(a′, ω)] ≥
∑
ω

µ̂(ω)π(a|ω)[v(a, ω)− v(a′, ω)].

Moreover, the static robustification does not have much influence on the designer’s payoff. In
particular, if what is used for the static robustification is not a typical signaling scheme π but the
signaling scheme π̂ = π∗(π̂) that is optimal for the designer under the belief estimate µ̂, then π̂ will
be converted to another signaling scheme that guarantees approximate optimality for the designer.
By being static, the robustification process is applied to the signaling scheme π̂ once, and the same
statically robustified signaling scheme π̃ is used repeatedly in each period for the robustification
phase till the end.

The effect of our static robustification is summarized in Lemma 4. We construct the static
robustification signaling scheme π̃ by taking a mixture of three signaling schemes: the direct
signaling scheme π under µ̂, the signaling scheme that induces buffer beliefs ηa for each a ∈ A

(by Assumption 2), and the signaling scheme that fully reveals states. Let δ ∈ (0, 1
2
) be the

robustification strength, which measures how strongly “good” signaling schemes (the signaling
scheme that induces buffer beliefs ηa for each a ∈ A and the full revelation signaling schemes)
influence the robustification. In particular, the weights of the mixture are roughly 1− 2δ, δ, and δ,
respectively. The full-revelation signaling scheme in the mixture ensures Bayesian plausibility.

Lemma 4 (Static Robustification). Assume Assumptions 1 and 2. Choose ε ≤ p20D

4
. Given the

belief estimate µ̂ and the robustification strength δ ∈ [ 2ε
p0D

, p0
2
], any direct signaling scheme π can

be converted into another direct signaling scheme π̃ such that

• (improved persuasiveness for the receiver) for any prior beliefs µ and µ̂ with ∥µ− µ̂∥1 ≤ ε,
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for any recommendation a ∈ A from π̃, the persuasiveness of π̃ and π under the resulted

posterior beliefs µ(·|a, π̃), µ̂(·|a, π̃) are close:

Eω∼µ(·|a,π̃)
[
v(a, ω)−v(a′, ω)

]
≥ min

{
Eω∼µ̂(·|a,π)

[
v(a, ω)−v(a′, ω)

]
+δD− 2ε

p0
, 0

}
, ∀a′ ∈ A\{a},

and, in particular, if the direct signaling scheme π is persuasive for µ̂, then its robustification

result π̃ is persuasive for µ;

• (tiny influence for the designer) when the receiver obeys the recommendation, the designer’s

payoff from the robustified signaling scheme π̃, compared to that from the direct signaling

scheme π, satisfies

U(π̃, ρob;µD) ≥ U(π, ρob;µD)−
3δ

p0
,

where ρob is the receiver’s obedience strategy that puts weight one on the recommended

action;

• (close signaling schemes) the robustification result π̃ and the direction signaling scheme π

are close:

∥π̃(·|ω)− π(·|ω)∥1 ≤
4δ

p20
, ∀ω ∈ Ω.

To see the high-level idea, by the distance between µ̂ and µR at ∥µ̂− µR∥1 ≤ ε, the designer’s
optimal signaling scheme π̂ under µ̂ will not be persuasive under the receiver’s belief µR by a
margin that is only at most O( ε

p0
). The signaling scheme that induces the belief ηa for each a ∈ A is

strictly persuasive for the receiver by a margin of D by Assumption 2. The full revelation signaling
scheme is weakly persuasive. Thus, the persuasiveness of the mixture, that is, the signaling scheme
π̃, is

D · δ + 0 · δ − (1− 2δ) ·O(
ε

p0
) ≥ 0

by a choice of the robustification strength δ = O( ε
p0D

). As a result, the loss of the designer is at
most

2δ ·O(
1

p0
) = O(

ε

p20D
).

In contrast to previous works that apply a robustifying process to the signaling scheme optimal
for the belief estimate (Zu, Iyer, and Xu, 2021) or to signaling schemes persuasive for the belief
estimate (Li and Lin, 2025), our static robustification is applied to any direct signaling schemes,
thus being the most general. If we apply Lemma 4 to the designer’s optimal signaling scheme
π̂ under the belief estimate µ̂ with the robustification strength δ = 2ε

p20D
, then we will obtain an

approximately optimal signaling scheme for the actual prior µR of the receiver. This specific
application is summarized in Corollary 1.
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Corollary 1 (Robustification for the optimal signaling scheme). With ∥µ̂ − µR∥1 ≤ ε ≤ p20D

4
,

the designer’s optimal signaling scheme π̂ under belief µ̂ can be converted into another signaling

scheme π̃ that is persuasive under belief µR and 6ε
p20D

-optimal for the designer.

See details of Lemma 4 in Appendix B.4.

3.3 FULL LEARNING ALGORITHM WITH O(log2 T ) REGRET

Finally, we combine the prior-learning algorithm and the static robustification to obtain a signaling
scheme π̃ that is O(ε)-approximately optimal for the designer and persuasive for the receiver under
belief µR. Using the robustified signaling scheme π̃ in each of the remaining periods thus incurs a
small regret. The total regret of Algorithm 4 is formally characterized in Theorem 1.

Algorithm 4: Learning Algorithm for the Static Benchmark
Parameter: ε > 0

1 Run Algorithm 3 with parameter ε to obtain an estimate µ̂ of receiver’s belief. Let T0 be
the number of periods taken.

2 Apply Corollary 1 to µ̂ with parameter ε to obtain a signaling scheme π̃. Use π̃ for the
remaining T − T0 periods.

Theorem 1. Assume Assumptions 1, 2, 3, 4. Choose ε =
p20D

4T
. The static regret of Algorithm 4 is

at most

Regstatic(T ;Algorithm 4, I) ≤ O
( 1

1− γ
log2 T

)
. (12)

Proof. By Lemma 3, we have ∥µ̂−µR∥1 ≤ ε and E[T0] ≤ 2|Ω|
(

1
p0
+ 1

1−γ
ln( 24|Ω|

(1−γ)G4p60ε
)
)
log2

24|Ω|
G2p40ε

.
According to Corollary 1, the constructed signaling scheme π̃ is persuasive for µR and is 6ε

p20D
-

approximately optimal for the designer. Thus, the regret of Algorithm 4 satisfies

Regstatic(T ;G, I) ≤ E[T0 · 1]︸ ︷︷ ︸
regret in the first T0 periods

+ (T − E[T0])
6ε

p20D︸ ︷︷ ︸
regret in the remaining periods

≤ 2|Ω|
( 1

p0
+

1

1− γ
ln
( 24|Ω|
(1− γ)G4p60ε

))
log2

24|Ω|
G2p40ε

+ T
6ε

p20D

Choosing ε =
p20D

4T
(which satisfies the condition in Corollary 1), we obtain

Regstatic(T ;G, I) ≤ 2|Ω|
( 1

p0
+

1

1− γ
ln
( 96|Ω|T
(1− γ)G4p80D

))
log2

96|Ω|T
G2p60D

+
3

2

= O
( 1

1− γ
log2 T

)
.
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To see the intuition of Theorem 1, recall the algorithm has two phases: (i) learning the receiver’s
belief µR for an accuracy ε, and (ii) robustification, which repeatedly uses a robustified signaling
scheme that is guaranteed persuasive for the receiver’s belief µR and approximately optimal for
the designer. Phase (i) runs binary search algorithms to keep updating the experimented signal-
ing scheme, which takes at most O(log(1

ε
)) distinct experimented signaling schemes. Further, for

each distinct experimented signaling scheme, making the obedience incentive strong enough for a
strategic receiver requires an additional repetition sub-phase of length m = O

( log( 1
ε
)

1−γ

)
, contributing

another log(1
ε
). Thus, we get the O

(
1

1−γ
log2(1

ε
)
)

exploration cost formalized in Lemma 3. Phase
(ii) robustifies the designer’s optimal signaling scheme under the estimate µ̂. That preserves per-
suasiveness for all beliefs within a distance of ε of µ̂, thus also for the receiver’s belief µR, while
degrading the designer’s payoff by only O( ε

p20D
) per period (Corollary 1). Choosing ε =

p20D

4T
re-

sults in a loss of T · O( ε
p20D

) = O(1) for phase (ii) (exploitation), so the regret is dominated by
phase (i) (exploitation), yielding Regstatic(T ) = O

(
1

1−γ
log2 T

)
as claimed in Theorem 1.

We add a final brief remark on Algorithm 4 and Theorem 1. In the first phase, the designed
signaling scheme used in binary searches may be not persuasive. The designer’s primary goal is
to gather informative responses from the receiver’s actions to accurately estimate the prior through
binary search during that phase. Thus, achieving persuasiveness and optimality at each step is
secondary to this learning objective.

4 CHARACTERIZATION OF THE DYNAMIC BENCHMARK

This section characterizes the dynamic benchmark U∗∗
T (I), which is the optimal payoff obtainable

by the designer if she knows the receiver’s belief µR. That is, it is the designer’s optimal payoff
in a T -period repeated Bayesian persuasion problem with full commitment power. In Section 4.1,
we show that a certain class of grim-trigger-style strategies are optimal for the designer, that the
dynamic benchmark is weakly larger than the static benchmark, and that the designer’s optimal
strategy can be obtained through dynamic programming. In Section 4.2, we present examples to
illustrate the dynamic benchmark and the optimal strategy.

4.1 OPTIMAL DYNAMICALLY DIRECT + PUNISHMENT (DDP) STRATEGY

Optimal DDP strategy: dynamic benchmark characterization We show that the designer’s
dynamic benchmark U∗∗

T (I) can be achieved by a class of T -period strategies with a grim-trigger

property: the designer recommends actions to the receiver until the receiver deviates from the
recommendation, and provides no information if the receiver deviates. We call such a class of
T -period strategies “dynamically direct + punishment (DDP)” strategies.
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Definition 1 (DDP strategy). A T -period strategy σ of the designer is a dynamically direct +
punishment (DDP) strategy if σ

• (dynamically direct) uses a history-dependent direct signaling scheme if the receiver has

never deviated from past recommendations,

• (punishment) and reveals no information (i.e., always sending one signal regardless of the

state) if the receiver has deviated in the past.

We now introduce two important properties of DDP strategies. The first property is history

independence, which means that the signaling scheme in each period does not depend on what
happened in the past, as long as the receiver has been obedient since the beginning.

Definition 2 (History Independence). A DDP strategy σ is history-independent if the direct sig-

naling scheme π
(t)
σ for each period t depends on the period number t but not on history, as long as

the receiver has never deviated from past recommendations.

The second property is dynamic persuasiveness.

Definition 3 (Dynamic Persuasiveness). A DDP strategy σ = (π
(t)
σ )Tt=1 is dynamically persuasive

for the receiver if the receiver’s T -period obedient strategy

ϕob = obey the action recommendation in every period t ∈ {1, . . . , T} given any history

is a best response to σ.

If the direct signaling scheme in each period of a DDP strategy is all persuasive in the per-
period Bayesian persuasion game, then obedience is clearly a best response for the receiver, and
the DDP strategy is dynamically persuasive. However, a dynamically persuasive DDP strategy
may include some direct signaling schemes that are not persuasive in the static game. We will
provide such examples in Section 4.2.

The first result of this subsection shows that the designer’s dynamic benchmark U∗∗
T (I) can be

achieved by a history-independent and dynamically persuasive DDP strategy σ∗:

Proposition 1 (Optimality of DDP Strategy). The dynamic benchmark U∗∗
T (I) can be achieved

by a pair of strategies (σ∗, ϕob), where σ∗ = (π
(t)
σ∗ )Tt=1 is a history-independent and dynamically

persuasive DDP strategy of the designer, and ϕob is the T -period obedient strategy of the receiver.

Proof.

The proof of Proposition 1 has two steps. First, we characterize the dynamic revelation prin-

ciple (in a similar spirit to Myerson, 1986) in the following Lemma 5, which shows that the de-
signer’s T−period (global) optimal utility U∗∗

T (I) can always be achieved by a history-dependent
dynamically persuasive DDP strategy. See Appendix C.1 for the proof of Lemma 5.
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Lemma 5 (Dynamic revelation principle). There exists an optimal strategy σ∗ = (π
(t)
σ∗ )Tt=1 for

the designer that is a history-dependent dynamically persuasive DDP strategy, that is, U∗∗
T (I) =

UT (σ
∗, ϕob;µD) and ϕob = ϕ∗(σ∗, µR).

Next, we show in Lemma 6 that history-dependence is not needed. At a high level, this is
because the Bayesian persuasion problems at different periods are independent, as the states are
i.i.d. sampled. As long as the receiver has not deviated in the past, his actions will not contain
information that is valuable for the designer. Thus, the designer does not need to adjust signaling
schemes based on the irrelevant history. The formal proof of Lemma 6 is in Appendix C.2.

Lemma 6. There exists an optimal dynamically persuasive DDP strategy that is history-independent.

The above two lemmas together prove Proposition 1.

Computing the optimal DDP strategy (dynamic benchmark) Proposition 1 significantly sim-
plifies the designer’s optimization problem. We can write the dynamic benchmark U∗∗

T (I) as an
optimization problem over history-independent DDP strategies subject to the dynamic persuasive-
ness constraint.

We now study the dynamic persuasiveness constraint in detail. For a history-independent
DDP strategy σ = (π

(t)
σ )Tt=1, dynamic persuasiveness requires that for each period t, the se-

quence of ongoing (period t included) direct signaling schemes (π
(t)
σ , . . . , π

(T )
σ ) in σ = (π

(t)
σ )Tt=1

should satisfy the following: for any action a recommended by π
(t)
σ with positive probability

P
µR,π

(t)
σ
(a) =

∑
ω∈Ω µR(ω) π

(t)
σ (a | ω) > 0, for any a′ ∈ A,

γt
∑
ω∈Ω

µR(ω)π
(t)
σ (a|ω)

P
µR,π

(t)
σ
(a)

v(a, ω) +
T∑

t′=t+1

γt′V (π(t′)
σ , ρob;µR)

≥ γt
∑
ω∈Ω

µR(ω)π
(t)
σ (a|ω)

P
µR,π

(t)
σ
(a)

v(a′, ω) +
T∑

t′=t+1

γt′Vuninformed(µR),

(13)

where Vuninformed(µR) = maxa∈A
∑

ω∈Ω µR(ω)v(a, ω) is the receiver’s payoff from being pun-
ished. The left-hand side of Eq. (13) is the receiver’s payoff of obedience from period t to T given
the action a recommended at period t, while the second line is the receiver’s payoff from period t

to T by deviating to a′ at period t and then being punished in the future.
An equivalent way to write the dynamic persuasiveness constraint uses the receiver’s posterior

belief. In particular, denote by µR(ω|a, π(t)
σ ) = µR(ω)π

(t)
σ (a|ω)

P
µR,π

(t)
σ

(a)
the posterior belief of state ω given

action a sent by signaling scheme π(t) under belief µR, Then, Eq. (13) can be rewritten as follows.
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For each period t, ∀a, a′ ∈ A,

γtE
ω∼µR(·|a,π(t)

σ )

[
v(a, ω)− v(a′, ω)

]
+

T∑
t′=t+1

γt′
(
V (π(t′)

σ , ρob;µR)− Vuninformed(µR)
)
≥ 0. (14)

Formally, the optimization problem for the dynamic benchmark U∗∗
T (I) is

U∗∗
T (I) = max

history-independent DDP strategy σ = (π
(t)
σ )Tt=1

UT (σ;ϕob, µD) =
T∑
t=1

U(π(t)
σ , ρob;µD) (15)

subject to σ satisfies (13) or (14).

Lemma 7 shows that the dynamic benchmark is always weakly larger than the static benchmark.
Moreover, the dynamic benchmark is strictly larger than the static benchmark in some instances,
as we will show in Section 4.2.

Lemma 7. Dynamic benchmark is weakly larger than static benchmark: U∗∗
T (I) ≥ U∗

T (I).

Proof. Let π∗
BP be an optimal signaling scheme in the static Bayesian persuasion problem. From

Section 3.2, π∗
BP is persuasive, where the obedient strategy ρob of the receiver is a single-period

best response. Thus, a T times repetition of π∗
BP, denoted by σrep = (π

∗(1)
BP , ..., π

∗(T )
BP ), is a feasible

strategy for the T -period game. The receiver’s global best response to σrep consists of obedience in
each period. Thus, the designer’s T -period payoff is T ·U∗

BP(I). By the optimality of the dynamic
benchmark, we immediately have

U∗∗
T (I) ≥ UT (σ

rep, ϕob;µD) = T · U∗
BP(I) = U∗

T (I).

A dynamic program to solve for U∗∗
T (I). Having shown that the designer’s dynamic benchmark

U∗∗
T (I) can be achieved by a history-independent dynamically persuasive DDP strategy, we present

a dynamic programming algorithm for obtaining such an optimal DDP strategy.
Define a value function F (t, g) as the designer’s optimal payoff from period t to period T under

a history-independent dynamically persuasive DDP strategy, such that the receiver’s continuation
payoff from being obedient (from period t to T ) is weakly larger than the continuation payoff
from being punished by receiving no information plus a non-negative margin of g ≥ 0. Then the
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designer’s optimization problem is, for each period t = {T, T − 1, ..., 1},

F (t, g) = max
π(t),...,π(T )

T∑
t′=t

U(π(t′), ρob;µD) (16)

s.t.
T∑

t′=t

γt′−t · V (π(t′), ρob;µR) ≥
T∑

t′=t

γt′−t · Vuninformed(µR) + g

(π(t), . . . , π(T )) is dynamically persuasive.

Essentially, the designer promises the receiver that he will obtain a payoff of at least
∑T

t′=t γ
t′−t ·

Vuninformed(µR) + g if he keeps being obedient from period t to T . Set F (t, g) = −∞ if the opti-
mization problem (16) is infeasible, which leads to the dynamic benchmark obtained at U∗∗

T (I) =
F (1, 0).

We compute the value function F (t, g) recursively from the last period. That is, we first solve
the optimization (17) for the last period t = T by solving

F (T, g) = max
π(T )

U
(
π(T ), ρob;µD

)
(17a)

s.t. V
(
π(T ), ρob;µR

)
− Vuninformed(µR) ≥ g,

π(T ) is persuasive.

Then, for each t ∈ {T − 1, T − 2, . . . , 1}, g ≥ 0, solve the following optimization problem, which
makes use of the value function F (t+ 1, g′) for the next period t+ 1:

F (t, g) = max
π(t),g′≥0

U(π(t), ρob;µD) + F (t+ 1, g′) (18)

s.t. V (π(t), ρob;µR)− Vuninformed(µR) + γ · g′ ≥ g∑
ω∈Ω

µR(ω)π
(t)(a|ω)

(
v(a, ω)− v(a′, ω) + γ · g′

)
≥ 0 ∀a, a′ ∈ A.

To see the intuition, we note that F (t, g) is the designer’s best total payoff from period t onward,
while promising the receiver that his obedient payoff will be larger than his deviating payoff by
at least a margin of g ≥ 0, starting from the current period t to the end. At the current period
t, the designer chooses the current signaling scheme π(t) and the next promised payoff g′ that the
designer must deliver starting from the next period t + 1. The current signaling scheme π(t) and
the next promised payoff g′ should satisfy the first constraints in the above optimization problems,
which ensure that the receiver’s obedient payoff is larger than the deviating payoff by a margin of
g starting from the beginning of period t. The choices of π(t) and g′ should also satisfy the second
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constraints above, such that the receiver, after receiving the current recommendation a, will indeed
find the recommendation persuasive, considering the gain from deviating from a to a′ and the loss
of promised future utility g′ after deviation.

The following Lemma 8 shows that the dynamic program above computes the dynamic bench-
mark correctly, with its full proof in Appendix C.3.

Lemma 8 (Dynamic program for dynamic benchmark). The dynamic program (17)-(18) computes

an optimal solution (σ∗, ϕob) that reaches the dynamic benchmark U∗∗
T (I), where σ∗ = (π

(t)
σ∗ )Tt=1 is

an optimal DDP strategy that is history-independent and dynamically persuasive.

4.2 EXAMPLES OF OPTIMAL DDP STRATEGIES

In this subsection, we illustrate the structure of the history-independent dynamically persuasive
DDP strategy, which achieves the dynamic benchmark U∗∗

T . We consider an example with three
states Ω = {ω1, ω2, ω3} and three actions A = {a1, a2, a3}. The payoffs of the designer and
receiver are as follows (rows for actions, columns for states):

designer’s u ω1 ω2 ω3

a1 1 1 1

a2 1/2 1/2 1/2

a3 0 0 0

receiver’s v ω1 ω2 ω3

a1 1 0 0

a2 0 1 0

a3 0 0 1

In words, the designer prefers a1 the most, a2 the second, a3 the least, regardless of the state, while
the receiver wants to match the state. The designer’s belief µD is a uniform distribution over the
states, while the receiver’s prior belief µR is not:

µD = (1/3, 1/3, 1/3), µR = (1/5, 3/10, 1/2).

The receiver believes that ω3 is the most likely under belief µR, so he will take a3 by default.
We will compare the optimal DDP strategy against the optimal signaling scheme π∗

BP in the static
Bayesian persuasion problem:

π∗
BP =

ω1 ω2 ω3

a1 1 2/3 2/5
a2 0 1/3 1/5
a3 0 0 2/5
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which provides the designer and the receiver with expected payoffs

U∗
BP = U(π∗

BP, ρob;µD) = 0.778, V (π∗
BP, ρob;µR) = 0.5 = Vuninformed(µR), (19)

respectively. For different choices of T and γ, we compute an optimal DDP strategy σ∗ = (π
(t)
σ∗ )Tt=1

for the designer by using the dynamic programming in Lemma 8 and present the results below.

4.2.1 OPTIMAL DDP STRATEGY FOR T = 2 PERIODS

We start with the simple case where the total number of periods is T = 2 and the receiver has
discount factor γ = 1 (the receiver is patient). In this case, the optimal DDP strategy σ∗ =

(π
(1)
σ∗ , π

(2)
σ∗ ) for the designer is the following:

σ =

 π(1) :

ω1 ω2 ω3

a1 1 1 1

a2 0 0 0

a3 0 0 0

, π(2) :

ω1 ω2 ω3

a1 1 0 2/5
a2 0 1 0
a3 0 0 3/5


With an obedient receiver, the designer’s expected payoffs under the two signaling schemes are

U(π
(1)
σ∗ , ρob;µD) = 1, U(π

(2)
σ∗ , ρob;µD) = 0.6333.

The (average) dynamic benchmark is given by the average payoff

1

T
U∗∗
T =

1

T
UT (σ

∗, ϕob;µD) = 0.8167, (20)

which is larger than the static BP benchmark (19). The obedient receiver’s expected payoffs under
the two signaling schemes are

V (π
(1)
σ∗ , ρob;µR) = 0.2, V (π

(2)
σ∗ , ρob;µD) = 0.8,

with the undiscounted average being

1

T
VT (σ

∗, ϕob;µD) = 0.5 = Vuninformed(µR).

We note some interesting observations about the optimal DDP strategy:

• The signaling scheme π
(1)
σ∗ in the first period is not persuasive: it always recommends action

a1, which is in favor of the designer but not the receiver. An obedient receiver’s payoff under
π
(1)
σ∗ , 0.2, is even lower than the uninformed payoff Vuninformed(µR) = 0.5.
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• The signaling scheme π(2)
σ∗ in the second period is persuasive and provides the receiver with a

high ex-ante payoff of V (π
(2)
σ∗ , ρob;µR) = 0.8, which is significantly larger than the receiver’s

uninformed payoff Vuninformed(µR) = 0.5.

• Due to the high ex-ante payoff promised by π
(2)
σ∗ , the receiver is willing to follow the non-

persuasive recommendation from π
(1)
σ∗ in the first period, because otherwise the receiver will

suffer a large loss in the second period. Therefore, the designer’s two-period strategy σ∗ =

(π
(1)
σ∗ , π

(2)
σ∗ ) satisfies dynamic persuasiveness.

• The average direct signaling scheme

πσ∗ =
1

2

(
π
(1)
σ∗ + π

(2)
σ∗

)
=

ω1 ω2 ω3

a1 1 0.5 0.7
a2 0 0.5 0
a3 0 0 0.3

is not persuasive in the static Bayesian persuasion game. In particular, when πσ∗ recom-
mends action a1, the receiver’s posterior belief is (0.2857, 0.2143, 0.5), under which the
receiver’s best action should be a3.

In summary, the optimal DDP strategy σ∗ = (π
(1)
σ∗ , π

(2)
σ∗ ) for T = 2 periods exhibits a first-

exploit-then-compensate structure. It is dynamically persuasive even though the individual signal-
ing schemes are not necessarily persuasive in the static Bayesian persuasion game. By exploit-
ing the receiver early and compensating him later, the designer obtains a higher average payoff
than the static Bayesian persuasion benchmark. Such a strategy is feasible only for a sufficiently
forward-looking receiver: if the receiver’s discount factor γ is too small, then the receiver will not
accept later compensation for early exploitation, so the problem reduces to the repetition of T = 2

Bayesian persuasion problems, and the dynamic benchmark collapses to the static benchmark. We
will discuss the effect of γ in more detail in Section 4.2.3.

4.2.2 OPTIMAL DDP STRATEGY FOR T = 30 PERIODS

We next consider the case with T = 30 periods and the receiver has discount factor γ = 0.8. In Fig-
ure 2, we plot the designer’s and receiver’s per-period payoffs U(π

(t)
σ∗ , ρob;µD) and V (π

(t)
σ∗ , ρob;µR)

under the direct signaling schemes of the optimal DDP strategy σ∗ = (π
(t)
σ∗ )Tt=1; they are the blue

and red solid curves in Figure 2. The average payoff of the designer under the optimal DDP
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Figure 2: Illustration of the optimal DDP strategy in Section 4.2.2.

strategy is

1

T
U∗∗
T =

1

T

T∑
t=1

U(π
(t)
σ∗ , ρob;µD) = 0.7957, (21)

which is larger than the static BP benchmark U∗
BP = 0.778.

We then observe oscillations in the blue and red curves, so the optimal DDP strategy’s influ-
ences on the designer’s payoff and the receiver’s payoff are not monotone. The oscillations can
be explained by the first-exploit-then-compensate structure of the optimal 2-period strategy and
the fact that the designer is more patient than the receiver. First, to see one oscillation, as in the
2-period case, the designer’s optimal strategy is to exploit first to obtain a desired payoff and then
to compensate the receiver to “pay for the debt.”

Then, to see the repeated oscillations, the periodic occurrence of the oscillations is explained
by the designer’s patience and the receiver’s impatience. Intuitively, pushing all “repayment”
to the end is too costly when the receiver is impatient but the designer is patient. To keep the
receiver obedient during an early exploit phase, the designer must promise future utility whose
discounted value to the receiver covers the interim shortfall. If that promise is delayed T ′ periods,
then its face value must be scaled up by about γ−T ′ to matter to the receiver. But the designer
values future payoffs without discounting, so such compensation is too costly for the designer. The
way to satisfy dynamic persuasiveness is therefore to interleave short “exploit” bursts with timely
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“compensation” bursts, keeping the receiver’s continuation value near the participation threshold
while avoiding a large back-loaded debt. That thus yields the observed periodic pattern in both
players’ payoffs.

Finally, we remark that the oscillation occurs only for a sufficiently forward-looking yet im-
patient receiver. If the receiver is very impatient with a very small value of γ, then the designer’s
optimal strategy will be to repeat her optimal strategy of the single-period Bayesian persuasion
game, leaving no oscillations for their payoffs.

4.2.3 EFFECT OF γ ON DYNAMIC BENCHMARK

We illustrate the effect of the receiver’s discount factor γ on the designer’s dynamic benchmark
U∗∗
T . Figure 3 plots the designer’s average payoff 1

T
U∗∗
T = 1

T

∑T
t=1 U(π

(t)
σ∗ , ρob;µD) and the re-

ceiver’s normalized payoff 1∑T
t=1 γ

t

∑T
t=1 γ

tV (π
(t)
σ∗ , ρob;µR) under the optimal DDP strategy as a

function of γ. We observe that the designer’s payoff is increasing with γ, which implies that a
more patient receiver leads to a higher dynamic benchmark for the designer. The receiver’s nor-
malized payoff, on the other hand, is not monotone with respect to γ. When γ is small (smaller than
0.5 in this example), the dynamic benchmark 1

T
U∗∗
T coincides with the static Bayesian persuasion

benchmark U∗
BP.

(a) Designer’s average payoff (b) Receiver’s normalized payoff

Figure 3: Designer’s and receiver’s payoffs under the optimal DDP strategy, as a function of re-
ceiver’s discount factor γ.

The observation that the designer’s dynamic benchmark U∗∗
T is increasing with the receiver’s

discount factor γ is not limited to this example. Note that the optimal DDP strategy σ∗
γ for γ, which

is dynamically persuasive for a receiver with discount factor γ, is also dynamically persuasive for
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a receiver with a larger discount factor γ′ > γ. With a more patient receiver, the better-than-
uninformed total utility promised by the DDP strategy in the future becomes more attractive to the
receiver, so the receiver is more willing to be obedient. Since the DDP strategy σ∗

γ is dynamically
persuasive for γ′ > γ, σγ is a feasible solution to the designer’s dynamic programming problem un-
der γ′ and thus is weakly worse than the optimal strategy σ∗

γ′ that achieves the dynamic benchmark
for the designer under γ′.

Proposition 2. For any instance I and any T ≥ 1, the designer’s dynamic benchmark U∗∗
T (I) is

weakly increasing with the receiver’s discount factor γ.

Proof. The full proof is given in Appendix C.4.

Though the dynamic benchmark U∗∗
T (I) is increasing in γ, the designer is not always better off

in the learning problem with an unknown receiver’s belief µR. The learning cost of O( 1
1−γ

log2 1
ε
)

shown in Lemma 3 is also increasing in γ, as a more patient receiver has a larger incentive to
manipulate the learning process of the designer. In fact, we will show in Section 6 that the designer
has to suffer a linear regret of Ω(T ) when the receiver is fully patient (γ = 1).

The designer benefits in the dynamic benchmark compared to that in the static benchmark as T
goes to infinity. To see that, in Figure 3a, the x-axis intersects the designer’s average payoff at her
single-period Bayesian persuasion optimality, while the highest horizontal line intersects the de-
signer’s average payoff at her single-period optimality under IR. When T → ∞, when the receiver
converges to being fully patient γ → 1, then the time-averaged dynamic benchmark converges to
the designer’s single-period optimality under the the receiver’s individual rationality constraint (for
simplicity, it is named as the designer’s optimality under IR), while the designer’s optimality under
IR is weakly larger than the designer’s single-period Bayesian persuasion optimality (i.e., the de-
signer’s optimality under the constraint of the signaling scheme being persuasive for the receiver).
To see why, the solution to the designer’s single-period Bayesian persuasion problem is a feasi-
ble solution to her single-period optimization under the receiver’s individual rationality constraint.
When the receiver is not patient with γ → 0, the time-averaged dynamic benchmark converges to
the designer’s single-period Bayesian persuasion optimality. The idea is formally characterized in
Proposition 3.

Proposition 3. With Assumptions 1 and 3, the designer’s dynamic benchmark satisfies

lim
T→∞

lim
γ→1

1

T
U∗∗
T (I; γ) = U∗

IR,

where U∗
IR is the designer’s single-period optimality under the constraint of the receiver’s individ-
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ual rationality:

max
π:Ω→∆(A)

U(π, ρob;µD) s.t. V (π, ρob;µR) ≥ Vuninformed(µR). (22)

Proof. See Appendix C.5.

5 LEARNING TO ACHIEVE NO REGRET AGAINST THE DYNAMIC BENCHMARK

For the dynamic benchmark, the learning algorithm also consists of two phases. The first is an
exploration phase for learning the receiver’s prior belief, which is based on the same algorithm as
for the static benchmark but with different parameters. For the second phase, we propose a new
robustification process, dynamic robustification, to robustify a designer-optimal strategy computed
from the learned prior, which ensures approximate optimality for the designer under the receiver’s
belief µR. In this section, we first study the dynamic robustification based on the estimated belief.
Then, we show the full algorithm to achieve no regret for the dynamic benchmark.

5.1 DYNAMIC ROBUSTIFICATION FOR DDP STRATEGY

Denote by σ̂ = (π
(1)
σ̂ , . . . , π

(T )
σ̂ ) the designer’s optimal DDP strategy, which achieves the dy-

namic benchmark U∗∗
T (Ω, A, u, v, µD, µ̂) under belief µ̂. Proposition 1 implies that the strategy

σ̂ is history-independent and dynamically persuasive for µ̂. We show that σ̂ can be dynamically

robustified into another DDP strategy σ̃ = (π
(1)
σ̃ , . . . , π

(T )
σ̃ ) that is history-independent and dynam-

ically persuasive for a strategic receiver with any belief µR satisfying ∥µR − µ̂∥1 ≤ ε.
We first show how to convert any signaling scheme π

(t)
σ̂ for any period t from the designer’s

optimal DDP strategy σ̂ under belief µ̂ to a corresponding signaling scheme π
(t)
σ̃ .

A natural idea is to apply static robustification (Lemma 4) to the signaling scheme π
(t)
σ̂ in each

period t in the DDP strategy σ̂. Recall that static robustification mixes over signaling schemes
and thereby increases the persuasiveness of the statically robustified signaling scheme under the
receiver’s prior belief µR, i.e.,

Eω∼µR(·|a,π̃(t))

[
v(a, ω)−v(a′, ω)

]
≥ min

{
E

ω∼µ̂(·|a,π(t)
σ̂ )

[
v(a, ω)−v(a′, ω)

]
+O(δ), 0

}
, ∀a′ ∈ A\{a},

where π̃(t) is the signaling scheme statically robustified from π
(t)
σ̂ . Thus, the persuasiveness of the

statically robustified signaling scheme improves only after the receiver receives a recommenda-
tion. Before the receiver receives a recommendation, however, static robustification may lower the
receiver’s ex ante payoff from obedience, i.e., V (π̃(t′), ρob;µR) < V (π

(t′)
σ̂ , ρob;µR) for any t′ > t.

In period t, after a recommendation is sent by the statically robustified signaling scheme, the re-
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ceiver’s incentive to obey the recommendation in the current period may become stronger. But
the receiver’s ex ante payoff from obeying the recommendations in future periods onward may get
worse. Thus, on balance, he may refuse to obey the current recommendation and leave the game.
In that way, a DDP strategy obtained by statically robustifying the signaling scheme in each period
is not guaranteed to be dynamically persuasive.

Hence, we propose a new type of robustification, payoff-improving robustification, which not
only increases the persuasiveness of an unrobustified signaling scheme but also weakly increases
the receiver’s ex ante payoff from being obedient.

Given a typical signaling scheme πσ̂ in a DDP strategy σ̂, the main idea of the payoff-improving
robustification is as follows. We first compute the signaling scheme πσ̃ that is obtained from static
robustification (Lemma 4) on πσ̂. Then, we mix πσ̃ with the full-revelation signaling scheme πfull,
which always recommends the optimal action for the receiver at each state. In particular, if πσ̃ is
already close to πfull (with distance less than O(

√
δ)), we directly change πσ̃ to πfull. If πσ̃ is far

from πfull (with distance more than O(
√
δ)), we take a mixture (1−O(

√
δ))πσ̃+O(

√
δ)πfull. Such

a mixture weakly improves the receiver’s utility (compared to πσ̂), improves the persuasiveness,
while hurting the designer’s utility by at most O(

√
δ).

Lemma 9 shows the result of any signaling scheme from the dynamic robustification in a DDP
strategy σ̂. We omit the time index of the signaling scheme for simplicity. See Appendix D.1 for
the full proof of Lemma 9.3

Lemma 9 (Payoff-improving robustification). Assume Assumptions 1, 2, and 3. For any signaling

scheme πσ̂ of the designer’s optimal DDP strategy under belief µ̂, with any belief µ satisfying

∥µ − µ̂∥1 ≤ ε ≤ p40DG

16
, with a dynamic robustification parameter δ ∈ [ 2ε

p0D
,
p30G

8
], the signaling

scheme πσ̂ can be converted into another signaling scheme πσ̃ such that:

• (improved persuasiveness) the persuasiveness of πσ̃ and πσ̂ for the receiver under beliefs µ

and µ̂, respectively, are close:

Eω∼µ(·|a,πσ̃)

[
v(a, ω)− v(a′, ω)

]
≥ min

{
Eω∼µ̂(·|a,πσ̂)

[
v(a, ω)− v(a′, ω)

]
+ δD − 2ε

p0
, 0

}
,

for any action a ∈ A recommended by πσ̃ and a′ ∈ A \ {a};

• (weakly improving the payoff of the receiver) the receiver’s payoff from obedience is weakly

increased: V (πσ̃, ρob;µ) ≥ V (πσ̂, ρob;µ);

3Lemma 9 can also be used to perform robustification to achieve no-regret against the static benchmark, as Lemma
4 does. However, Lemma 9 is derived from and conceptually more complex than Lemma 4. Lemma 9 gives worse (up
to constant factors) results for static robustification than those given by Lemma 4. Thus, we keep using Lemma 4 for
static robustification and use Lemma 9 for dynamic robustification.

35



• (small influence on the payoff of the designer) with an obedient receiver, the designer’s payoff

has a small decrease: U(πσ̃, ρob;µD) ≥ U(πσ̂, ρob;µD)− 4
√

δ
p30G

.

We then apply the above payoff-improving robustification procedure to every signaling scheme
π
(t)
σ̂ in the designer-optimal DDP strategy σ̂ for belief µ̂, a process we call dynamic robustification.

The result of the complete dynamic robustification is given in Theorem 2.

Theorem 2 (Dynamic robustification). Assume Assumptions 1, 2, and 3. Given the designer’s

optimal DDP strategy σ̂ under belief µ̂, with any belief µR satisfying ∥µR − µ̂∥1 ≤ ε for ε ≤
p40

1+p0γ/(1−γ)
DG
16

, there exists another history-independent DDP strategy σ̃ = (π
(1)
σ̃ , . . . , π

(T )
σ̃ ) such

that

• σ̃ is dynamically persuasive under belief µR;

• σ̃ is approximately optimal for the designer with

UT (σ̃, ϕob;µD) ≥ UT (σ̂, ϕob;µD)− 4T
√(

1
p0

+ γ
1−γ

)
2ε

p30GD
.

We now give the intuition for Theorem 2. The high-level idea of our dynamic robustification
procedure is to robustify the signaling scheme of each period t in the DDP strategy σ̂ backward
from T . In particular, for each period t = T, T − 1, . . . , 1, we convert π(t)

σ̂ to another signaling
scheme π(t)

σ̃ by Lemma 9 while treating the dynamically robustified tail (π(t+1)
σ̃ , . . . , π

(T )
σ̃ ) as fixed.

Given a recommended action a at time t and any deviation a′, Lemma 9 ensures the persuasive-
ness of π(t)

σ̃ under the belief µR after robustification compared to the persuasiveness of π(t)
σ̂ under

the estimate µ̂ by

E
ω∼µR(·|a,π(t)

σ̃ )

[
v(a, ω)− v(a′, ω)

]
≥ min

{
E

ω∼µ̂(·|a,π(t)
σ̂ )

[
v(a, ω)− v(a′, ω)

]
+ δtD − 2ε

p0
, 0

}
,

where a buffer δtD and a loss from the belief estimate 2ε
p0

are exerted on the persuasiveness of π(t)
σ̂

under the estimate µ̂.
But that is not enough. Then, we consider the dynamic persuasiveness constraint to secure the

receiver’s obedience in period t. The dynamic persuasiveness in period t is

γtE
ω∼µR(·|a,π(t)

σ̃ )
[v(a, ω)− v(a′, ω)]︸ ︷︷ ︸

today’s incentive

+
T∑

t′=t+1

γt′
(
V (π

(t′)
σ̃ , ρob;µR)− Vuninformed(µR)

)
︸ ︷︷ ︸

discounted future payoffs from obedience

≥ 0. (DPt)

There are two intuitive cases. First, when the persuasiveness of π
(t)
σ̃ under µR is already non-

negative, then the (already robustified) tail is dynamically persuasive, so the future accumulated
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payoffs from obedience is non-negative as well. Thus, the dynamic persuasiveness constraint (DPt)
holds immediately.

The second case is that the persuasiveness of π(t)
σ̃ under µR is already negative. Then we con-

sider the help from the already robustified tail, which comes from two sources: (i) robustifying the
tail cannot hurt the receiver (Lemma 9), and (ii) V (·, ·; ·) is 1-Lipschitz in the belief (Lemma 13),
so the gap from µ̂ to µR costs at most 2ε per period. Putting the contribution from those two
sources of the tail, the left-hand side of the dynamic persuasiveness constraint (DPt) is at least
γt
(
δtD − 2ε

p0

)
− 2ε γt+1

1−γ
. Choosing the dynamic robustification parameter δt =

(
1
p0

+ γ
1−γ

)
2ε
D

,
we obtain a non-negative right-hand side of (DPt), so the dynamic persuasiveness constraint (DPt)
holds.

Starting from t = T and moving backward, the same argument secures (DPt) for each period
t. Thus the completely dynamically robustified strategy σ̃ is dynamically persuasive for every µR

with ∥µR − µ̂∥1 ≤ ε.
By the upper bound of the cost from each robustification at each period t on the designer,

4
√

δt
p30G

(Lemma 9), as well as our choice of δt above, we have

UT (σ̃, ϕob;µD) ≥ UT (σ̂, ϕob;µD)− 4T

√(
1
p0

+ γ
1−γ

) 2ε

p30GD
.

See the full proof in Appendix D.2.

5.2 FULL LEARNING ALGORITHM WITH O(log2 T ) REGRET

The full algorithm for the learning performance relative to the dynamic benchmark is shown in
Algorithm 5. Algorithm 5 has two phases: a short learn-the-prior phase and a long exploit phase.
The first phase is learning the belief µR, which is the same as in Algorithm 4, but with different
choices of parameters. The second phase is the dynamic robustification.

Algorithm 5: Learning Algorithm for the Dynamic Benchmark
Parameter: ε > 0

1 Run Algorithm 3 with parameter ε to obtain an estimate µ̂ of the receiver’s belief. Let T0

be the number of periods taken.
2 Compute the optimal DDP strategy σ̂ for the (T − T0)-period game assuming that the

receiver has a prior belief µ̂ (by using, e.g., the dynamic program in Lemma 8).
3 Apply dynamic robustification (Theorem 2) to σ̂ to obtain DDP strategy σ̃. Use σ̃ for the

remaining T − T0 periods.

Theorem 3 shows the regret incurred by Algorithm 5 is at most in the order of O(log2 T ).
We first provide a brief intuition for proof here. Algorithm 5 has two phases: a short learn-the-
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prior phase and a long exploit phase. In the learning phase we run the estimation routine until the
receiver’s belief is identified up to ℓ1–error ε, which (even against a strategic receiver) takes

T0 = O

(
1

1− γ
log2

1

ε

)
rounds. In the exploitation phase we compute the optimal DDP plan for µ̂ and then apply dynamic

robustification so that obedience remains optimal for any belief within ε of µ̂. Dynamic robustifi-
cation preserves persuasiveness while incurring at most a T · O(

√
ε) loss in the designer’s value.

Choosing ε in the order of T−2 makes this second-phase loss negligible relative to T0, so the total
dynamic regret is driven by the learning time, yielding

O

(
1

1− γ
log2 T

)
.

Theorem 3. Assume Assumptions 1, 2, 3, 4. Choose ε =
p40

1+p0γ/(1−γ)
DG
16T 2 with γ ∈ (0, 1). The

dynamic regret of Algorithm 5 is at most

Regdynamic(T ;Algorithm 5, I) ≤ O
( 1

1− γ
log2 T

)
. (23)

Proof. The proof will use the following Lemma 10 (with proof given in Appendix D.3) to compare
the dynamic benchmarks for T -period game and (T − T0)-period game.

Lemma 10. For any integers T ≥ T0 ≥ 0 and beliefs µD, µ̂,

U∗∗
T−T0

(µD, µ̂) ≥ U∗∗
T (µD, µ̂)− T0.

By the dynamic robustification result (Theorem 2), σ̃ is dynamically persuasive for a receiver
with prior µR and approximately optimal for the designer in the (T − T0)-period game under a
prior µ̂:

UT−T0(σ̃, ϕob;µD) ≥ UT−T0(σ̂, ϕob;µD)− 4(T − T0)
√(

1
p0

+ γ
1−γ

)
2ε

p30GD

= U∗∗
T−T0

(µD, µ̂)− 4(T − T0)
√(

1
p0

+ γ
1−γ

)
2ε

p30GD

where the equality is because σ̂ is optimal for the (T − T0)-period game under receiver prior µ̂.
Using Lemma 10, the total utility of the designer in T periods is at least

UT ≥ 0 + UT−T0(σ̃, ϕob;µD) ≥ U∗∗
T (µD, µ̂)− T0 − 4(T − T0)

√(
1
p0

+ γ
1−γ

)
2ε

p30GD
.
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Applying dynamic robustification (Theorem 2) to the optimal DDP strategy under receiver prior
µR, we obtain an approximately optimal DDP strategy under receiver prior µ̂, so U∗∗

T (µD, µ̂) ≥
U∗∗
T (µD, µR)− 4T

√(
1
p0

+ γ
1−γ

)
2ε

p30GD
. Thus, we have

UT ≥ U∗∗
T (µD, µR)− 4T

√(
1
p0

+ γ
1−γ

)
2ε

p30GD
− T0 − 4(T − T0)

√(
1
p0

+ γ
1−γ

)
2ε

p30GD

≥ U∗∗
T (µD, µR)− T0 − 8T

√(
1
p0

+ γ
1−γ

)
2ε

p30GD
.

Choose ε =
p40

1+p0γ/(1−γ)
DG
16T 2 , which satisfies the requirement for ε in Theorem 2. By Lemma 3,

T0 ≤ 2|Ω|
(

1
p0

+ 1
1−γ

ln
( 24|Ω|
(1−γ)G4p60ε

))
log2

24|Ω|
G2p40ε

. So the designer’s regret is at most

Regdynamic(T ;Algorithm 5, I) = T0 + 8T
√(

1
p0

+ γ
1−γ

)
2ε

p30GD

≤ 2|Ω|
(

1
p0

+ 1
1−γ

ln
( 24|Ω|
(1−γ)G4p60ε

))
log2

24|Ω|
G2p40ε

+ 8T
√(

1
p0

+ γ
1−γ

)
2ε

p30GD

= O
( 1

1− γ
log2 T

)
.

Interestingly, the regret bounds of our two learning algorithms, Algorithms 4 and 5 (against
the static benchmark and the dynamic benchmark, respectively) are both logarithmic in time hori-
zon: O(log2 T ). While empirical estimation by observing the frequency distribution of states is
not relevant here, as the receiver’s belief is subjective, we note that our algorithm gives faster
learning. Learning a distribution via empirical estimation leads to regret at most O(

√
T ), which is

exponentially worse than our regret of O(log2 T ).

6 NECESSITY OF RECEIVER’S DISCOUNT: LOWER BOUND ON REGRETS

In this section, we prove that the assumption that the receiver has a γ < 1 discount factor is
necessary for the designer to achieve no regret asymptotically (or, sub-linear regret). In particular,
if the receiver has a discount factor γ = 1, then no matter what learning algorithm is used by the
designer, there always exists an information design instance such that the designer’s regret is at
least a constant times T .

We now introduce the regret lower bound. A regret lower bound means that for any algorithm,

there exists some instance I, i.e., for some unknown prior µR, such that

Reg(T ; I) ≥ cI · g(T ) = Ω(g(T )), ∀T,

for some instance-dependent constant cI > 0. The function g(T ) captures the unavoidable cost of

39



not knowing µR no matter what learning algorithm is used, which fundamentally shows how hard
the problem of information design with an unknown prior is.

Denote by Tγ =
∑T

t=1 γt the receiver’s effective horizon. Theorem 4 shows that the worst-
case regret of any learning algorithm G for the designer must be linear in the receiver’s effective
horizon, with respect to both the static benchmark and the dynamic benchmark.

Theorem 4 (Regret lower bound for both benchmarks). For any learning algorithm G, there exists

an instance I such that T · U∗
BP(I) = U∗∗

T (I) and the designer’s regrets with respect to both

benchmarks are at least Ω(Tγ):

• for γ ∈ [0, 1− 1
T
), the designer’s regret is at least Ω( 1

1−γ
).

• for γ ∈ [1− 1
T
, 1], the designer’s regret is at least Ω(T ).

Proof. See Appendix E.3 for the full proof.

We remark that the instance above satisfies the regularity assumptions in Theorem 1, which
implies that the designer’s regrets come from the receiver’s strategic decision-making instead of
irregularities. Theorem 4 implies that the designer cannot obtain sub-linear regret against a patient
receiver. This shows the necessity of an impatient receiver in our model.

6.1 OVERVIEW OF THE PROOF FOR THE REGRET LOWER BOUND AGAINST BOTH

BENCHMARKS

The rest of this section gives an overview of the proof of Theorem 4. We construct a family of
single-period information design instances that capture a single-period auction problem, where
the receiver’s subjective belief corresponds to the buyer’s private value of the item in the auction.
Using the fact that an auctioneer who does not know the buyer’s private value suffers a constant
revenue loss (Amin, Rostamizadeh, and Syed, 2013), we prove that the designer, not knowing
the receiver’s belief, must suffer a constant regret in the single-period game. We then reduce the
T -period game to the single-period game to show that the designer’s total regret is at least Ω(Tγ).

Single-period information design problem with menu To prove Theorem 4, we construct a
family of instances of single-period information design problems with menus. These instances
capture single-buyer single-seller auctions. Suppose there are two states Ω = {ω0, ω1} and two
actions A = {a0, a1}. The designer always prefers the receiver to take a1 regardless of the state,
i.e.,

u(a1, ω) = 1, u(a0, ω) = 0, ∀ω ∈ Ω. (24)
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The receiver wants to match the state , i.e.,4

v(a0, ω0) = 0, v(a0, ω1) = 0, v(a1, ω0) = −1, v(a1, ω1) = 1. (25)

The designer’s belief µD is as follows.

µD(ω0) = 1− p0, µD(ω1) = p0, with 0 < p0 < 1/2. (26)

The receiver’s belief µR is parameterized by a number µ̃R ∈ [0, 1] that is unknown to the designer.
In particular, set

µR(ω0) =
1

1+µ̃R
, µR(ω1) =

µ̃R

1+µ̃R
. (27)

Consider a single-period game where the designer first elicits the receiver’s belief and then uses
a direct signaling scheme to recommend an action to the receiver. Formally, the designer designs
a menu, which is a family of direct signaling schemes M = {πµ}. If the receiver reports belief µ
and obeys the recommendation from the signaling scheme πµ, then he gets single-period payoff at

V sp(M, µR, µ) =
∑
ω∈Ω

µR(ω)
∑
a∈A

πµ(a|ω)v(a, ω)

= −µR(ω0)πµ(a1|ω0) + µR(ω1)πµ(a1|ω1)

= 1
1+µ̃R

(
µ̃Rπµ(a1|ω1)− πµ(a1|ω0)

)
. (28)

Eq. (28) captures the payoff of a buyer in a corresponding auction setting. Specifically, the re-
ceiver’s belief µ̃R corresponds to the buyer’s private value of an item; πµ(a1|ω1) captures the
probability that the receiver gets the item; πµ(a1|ω0) is the receiver’s payment. We say the menu
M = {πµ} is

• incentive compatible if the receiver is willing to report his belief (private value) truthfully:
∀µR, ∀µ, V sp(M, µR, µR) ≥ V sp(M, µR, µ);

• individually rational if the receiver is weakly better off with the menu compared to receiving
no information: ∀µR, V sp(M, µR, µR) ≥ Vuninformed(µR) = maxa∈A

∑
ω∈Ω µR(ω)v(a, ω).

Benchmarks If the designer knows the receiver’s belief µR, then the designer’s optimal single-
period signaling scheme will be

π∗
µR
(a1|ω1) = 1, π∗

µR
(a0|ω1) = 0, π∗

µR
(a1|ω0) = µ̃R, π∗

µR
(a0|ω0) = 1− µ̃R (29)

4We allow negative utility v(a1, ω0) = −1 for convenience. One can define an equivalent instance with positive
utility by adding a constant.
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where π∗
µR
(a1|ω1) = 1 means always allocating the item to the buyer, and π∗

µR
(a1|ω0) = µ̃R means

setting the payment equal to the buyer’s value µ̃R (see Appendix E.1 for the formal proof). The
optimal signaling scheme gives the designer an expected payoff of

U∗(µR) = µD(ω0)π
∗
µR
(a1|ω0) + µD(ω1)π

∗
µR
(a1|ω1) = (1− p0)µ̃R + p0, (30)

where U∗(µR) is exactly the Bayesian persuasion benchmark U∗
BP(I)

U∗(µR) = U∗
BP(I). (31)

Moreover, the Bayesian persuasion benchmark turns out to be equal to the global dynamic bench-
mark in this instance, so the designer’s regret with respect to the two benchmarks will be the same.

Lemma 11. In the above information design instance, T · U∗
BP(I) = U∗∗

T (I).

Proof. See Appendix E.1.

Single-period regret When the designer does not know the receiver’s belief µR and uses a certain
incentive compatible and individually rational menu M, she gets a single-period payoff at

U sp(M, µR) = (1− p0)πµR
(a1|ω0) + p0πµR

(a1|ω1). (32)

Compared to the optimal utility (30), the designer’s single-period regret is

Regsp(M, µR) = (1− p0)µ̃R + p0 − U sp(M, µR). (33)

Lemma 12. For any incentive compatible and individually rational menu M, there exists an in-

stance with p0 = 1
8

and µ̃R ∈ [3
8
, 1] (which corresponds to a belief µR satisfying the regularity

assumption 1) such that Regsp(M, µR) ≥ 1
16

.

Proof. See Appendix E.2.

Reduction from T -period game to single-period game We then reduce the T -period informa-
tion design game to a single-period game. Let G be any learning algorithm of the designer in the
T -period game. Recall that a strategic receiver with prior µR best responds by using T -period
strategy ϕ∗(G, µR) = (ϕ(t))Tt=1. The pair (G, ϕ∗(G, µR)) generates a sequence (π(t), ρ(t))Tt=1 of the
designer’s signaling schemes and the receiver’s single-period strategies. We consider the average
probability σµR

(a|ω) that the receiver takes action a conditioning on state ω when the receiver uses
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ϕ∗(G, µR) to interact with the designer’s algorithm G, weighted by the receiver’s discount factor:

σµR
(a|ω) := E(π(t),ρ(t))∼G,ϕ∗(G,µR)

[
1

Tγ

T∑
t=1

γt
∑
s∈S

π(t)(s|ω)ρ(t)(a|s)
]
. (34)

σµR
(·|ω) is a distribution over A, so σµR

can be regarded as a direct signaling scheme. Consider the
menu M = {σµR

}µR∈∆(Ω) of the direct signaling scheme σµR
associated with belief µR. Because

the receiver is best-responding, the menu M constructed in this way must be incentive-compatible
and individually rational for the receiver; this is reminiscent to a “revelation principle” and we
formally prove this in Appendix E.3. Then, according to Lemma 12, for any such menu there
exists an instance such that the single-period regret of the designer is at least 1

16
. That is in fact the

designer’s average regret during the periods when she has not fully learned the receiver’s belief µR

due to receiver’s manipulation. Because the receiver’s manipulation horizon is Tγ , the designer’s
total regret is at least 1

16
Tγ , which proves Theorem 4. We provide a formal argument in Appendix

E.3.

7 DISCUSSION

We study the information design problem when the information designer does not know the belief
of a strategic receiver. We design learning algorithms so that the designer can learn the receiver’s
belief through repeated interactions. Our learning algorithms are robust to the receiver’s strategic
manipulation of the learning process of the designer.

We define regret relative to two benchmarks to measure the performance of the learning algo-
rithms. The static benchmark is T times the single-period optimum for the designer for the known
belief. The dynamic benchmark is the global optimality for the designer for the known belief.
Our learning algorithms achieve no regret against both benchmarks at fast speeds of O(log2 T ).
Our work thus provides a robust learning foundation for the information design problems with
unknown subjective beliefs of strategic receivers.

We offer a brief discussion of several natural extensions. First, while we consider the receiver’s
belief as a convergence outcome of his misspecified learning, it would be interesting to extend
the analysis to consider a receiver who is learning about the distribution. Will the two players’
learning converge to the true distribution of the states? Or will their learning converge to a belief
that is neither the true distribution of the states nor the receiver’s belief (µR in the paper) formed by
his own misspecified learning? Will any factors in the game, such as their patience comparisons,
determine which learning outcome they will reach?

Second, it is interesting to extend our results to consider a designer with a discount factor close
to but strictly less than 1. As our model shows in the paper, the designer cannot be more impatient
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than the receiver. But what if the designer is close to being patient, i.e., γD close to 1? And
what if the designer is only more patient than the receiver but is still impatient, i.e., γ < γD < 1?
Such questions may have interesting implications for real-world problems. For example, the online
platform may have limited patience with a certain user because interactions require time, but time
is valuable.

Finally, our learning algorithms indeed enable the designer to achieve no regret at fast speeds.
But our learning algorithms rely on using the receiver’s actions, which may contain the receiver’s
privacy and security information. Can the designer still learn the receiver’s belief at a fast speed
without learning the receiver’s privacy? And if learning the privacy cannot be avoided, can the
designer use algorithms that unlearn the receiver’s privacy to make the learning reliable and trust-
worthy for the receiver? We leave those as open questions for future work.
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A USEFUL LEMMAS

Lemma 13 (Lipschitz continuity of utility). The designer’s and receiver’s expected utility func-

tions, U(π, ρ;µD), V (π, ρ;µR), are:

• 1-Lipschitz continuous with respect to priors under the ℓ1-norm:

|U(π, ρ;µ1)− U(π, ρ;µ2)| ≤ ∥µ1 − µ2∥1.

• 1-Lipschitz continuous with respect to π under the matrix ℓ1-norm:

|U(π1, ρ;µD)− U(π2, ρ;µD)| ≤ max
ω∈Ω

∑
s∈S

∣∣π1(s|ω)− π2(s|ω)
∣∣.

Analogous inequalities hold for V (·, ρ; ·).

Proof. Write
U(π, ρ;µD) =

∑
ω

µD(ω)
∑
s

π(s | ω)
∑
a

ρ(a | s)u(a, ω).

(Lipschitz in the prior). For fixed (π, ρ), the inner expectation lies in [0, 1], hence

∣∣U(π, ρ;µ1)−U(π, ρ;µ2)
∣∣ = ∣∣∣∑

ω

(µ1−µ2)(ω)·
∑
s,a

π(s | ω)ρ(a | s)u(a, ω)︸ ︷︷ ︸
∈[0,1]

∣∣∣ ≤ ∑
ω

|µ1−µ2|(ω) = ∥µ1−µ2∥1.

(Lipschitz in the signaling scheme). For fixed (ρ, µD), set ūs(ω) :=
∑

a ρ(a | s)u(a, ω) ∈ [0, 1].
Then

U(π1, ρ;µD)− U(π2, ρ;µD) =
∑
ω

µD(ω)
∑
s

(
π1 − π2

)
(s | ω) ūs(ω).

For each ω, the inner term is the difference of expectations of a [0, 1]-valued function under two
distributions on S, so by the dual characterization of total variation,∣∣∣∑

s

(
π1 − π2

)
(s | ω) ūs(ω)

∣∣∣ ≤ TV
(
π1(· | ω), π2(· | ω)

)
.

Averaging over ω (since µD is a probability measure) gives the stated bound. Finally, TV(p, q) =
1
2

∑
s |p(s)− q(s)| ≤ |S|

2
maxs |p(s)− q(s)| yields the matrix ℓ1–norm version. The proof for V is

identical with u replaced by v and µD by µR.

Lemma 14 (Lipschitz continuity of posterior). Let π : Ω → ∆(S) be any signaling scheme. Let

µ, µ′ ∈ ∆(Ω) be two priors. Let µs, µ′
s be the posterior belief induced by signal s under π and

prior µ, µ′ respectively. Suppose minω∈Ω µ(ω) ≥ p0 > 0. Then ∥µs − µ′
s∥1 ≤ 2

p0
∥µ− µ′∥1.
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Proof. Let π(s) =
∑

ω∈Ω µ(ω)π(s|ω) and π′(s) =
∑

ω∈Ω µ′(ω)π(s|ω) be the probability of signal
s under prior µ and µ′ respectively. By the definition of µs, µ

′
s and by triangle inequality,

∥µs − µ′
s∥1 =

∑
ω∈Ω

∣∣µ(ω)π(s|ω)
π(s)

− µ′(ω)π(s|ω)
π′(s)

∣∣
≤

∑
ω∈Ω

∣∣µ(ω)π(s|ω)
π(s)

− µ′(ω)π(s|ω)
π(s)

∣∣+∑
ω∈Ω

∣∣µ′(ω)π(s|ω)
π(s)

− µ′(ω)π(s|ω)
π′(s)

∣∣.
For the first term above,

∑
ω∈Ω

∣∣µ(ω)π(s|ω)
π(s)

− µ′(ω)π(s|ω)
π(s)

∣∣ = ∑
ω∈Ω

π(s|ω)
π(s)

|µ(ω)−µ′(ω)|. We note
that, ∀ω ∈ Ω,

π(s|ω)
π(s)

= π(s|ω)∑
ω′∈Ω µ(ω′)π(s|ω′)

≤ π(s|ω)
p0

∑
ω′∈Ω π(s|ω′)

≤ 1
p0
. (35)

Thus,
∑

ω∈Ω

∣∣µ(ω)π(s|ω)
π(s)

− µ′(ω)π(s|ω)
π(s)

∣∣ ≤ ∑
ω∈Ω

1
p0
|µ(ω)− µ′(ω)| = 1

p0
∥µ− µ′∥1.

For the second term,∑
ω∈Ω

∣∣µ′(ω)π(s|ω)
π(s)

− µ′(ω)π(s|ω)
π′(s)

∣∣ = ∑
ω∈Ω

µ′(ω)π(s|ω)
∣∣π′(s)−π(s)

π(s)π′(s)

∣∣
=

∑
ω∈Ω

µ′(ω)π(s|ω)
∣∣∑ω′∈Ω(µ

′(ω′)−µ(ω′))π(s|ω′)

π(s)π′(s)

∣∣
≤

∑
ω∈Ω

µ′(ω)π(s|ω)
∑

ω′∈Ω |µ′(ω′)−µ(ω′)|·maxω′∈Ω π(s|ω′)

π(s)π′(s)

= ∥µ′ − µ∥1
∑
ω∈Ω

µ′(ω)π(s|ω)
π′(s)

maxω′∈Ω π(s|ω′)

π(s)

by (35) ≤ ∥µ′ − µ∥1
∑
ω∈Ω

µ′(ω)π(s|ω)
π′(s)

1
p0

= 1
p0
∥µ′ − µ∥1.

Therefore, we obtain ∥µs − µ′
s∥1 ≤ 2

p0
∥µ′ − µ∥1.

Lemma 15 (coalescing signals). Let s1, s2 ∈ S be two signals from a signaling scheme π, to which

the receiver responds by the same action ρ(s1) = ρ(s2) ∈ A. Then, after coalescing signals s1 and

s2 into s by letting πc(s|ω) = π(s1|ω) + π(s2|ω), we have:

• Assuming that the receiver also responds by action ρ(s) = ρ(s1) = ρ(s2) for the coalesced

signal, the information designer’s and the receiver’s expected utilities do not change after

coalescing.

• For any actions a, a′ ∈ A, if the receiver’s posterior µs1 under s1 satisfies Eω∼µs1
[v(a, ω)−

v(a′, ω)] ≥ X1 and the posterior µs2 under s2 satisfies Eω∼µs2
[v(a, ω) − v(a′, ω)] ≥ X2,
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then the receiver’s posterior under s satisfies

Eω∼µs [v(a, ω)− v(a′, ω)] ≥ min{X1, X2}.

Proof. The expected utilities of the two players clearly do not change after coalescing. We then
verify the second claim. By definition, the receiver’s posterior µs satisfies

Eω∼µs

[
v(a, ω)− v(a′, ω)

]
=

∑
ω∈Ω

µ̂(ω)πc(s|ω)∑
ω′∈Ω µ̂(ω′)πc(s|ω′)

[
v(a, ω)− v(a′, ω)

]
=

∑
ω∈Ω

µ̂(ω)π(s1|ω)∑
ω′∈Ω µ̂(ω′)πc(s|ω′)

[
v(a, ω)− v(a′, ω)

]
+
∑
ω∈Ω

µ̂(ω)π(s2|ω)∑
ω′∈Ω µ̂(ω′)πc(s|ω′)

[
v(a, ω)− v(a′, ω)

]
=

∑
ω′∈Ω µ̂(ω′)π(s1|ω′)∑
ω′∈Ω µ̂(ω′)πc(s|ω′)

∑
ω∈Ω

µ̂(ω)π(s1|ω)∑
ω′∈Ω µ̂(ω′)π(s1|ω′)

[
v(a, ω)− v(a′, ω)

]
+

∑
ω′∈Ω µ̂(ω′)π(s2|ω′)∑
ω′∈Ω µ̂(ω′)πc(s|ω′)

∑
ω∈Ω

µ̂(ω)π(s2|ω)∑
ω′∈Ω µ̂(ω′)π(s2|ω′)

[
v(a, ω)− v(a′, ω)

]
= λ · Eω∼µs1

[
v(a, ω)− v(a′, ω)

]
+ (1− λ) · Eω∼µs2

[
v(a, ω)− v(a′, ω)]

≥ min{X1, X2},

where λ =
∑

ω′∈Ω µ̂(ω′)π(s1|ω′)∑
ω′∈Ω µ̂(ω′)πc(s|ω′)

∈ [0, 1].

B OMITTED PROOFS IN SECTION 3

B.1 PROOF OF LEMMA 1

Claim 1. During the binary search algorithm (Algorithm 1), the left endpoint always satisfies

ℓ(k) ≤ (1 + ι)
π∗(s0|ωj)

π∗(s0|ωi)
, and the right endpoint always satisfies r(k) ≥ (1− ι)

π∗(s0|ωj)

π∗(s0|ωi)
. Additionally,

ℓ(k) ≤ r(k). (This claim includes the initial step where k = 0.)

Proof. First, we verify that the claim holds at the initial step k = 0. By definition, we have
ℓ(0) = 0 ≤ (1 + ι)

π∗(s0|ωj)

π∗(s0|ωi)
, and r(0) = 1

Gp0
. Because by definition ãωj ,ωi

is the first indifference

action between states ωi and ωj , ãωj ,ωi
is weakly better than a∗ωj

when the signaling ratio is π∗(s0|ωj)

π∗(s0|ωi)

for a myopic receiver:

v(ãωj ,ωi
, ωi)− v(a∗ωj

, ωi) +
µR(ωj)

µR(ωi)

π∗(s0|ωj)

π∗(s0|ωi)

(
v(ãωj ,ωi

, ωj)− v(a∗ωj
, ωj)

)
≥ 0.
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Note that v(ãωj ,ωi
, ωi)− v(a∗ωj

, ωi) ≤ 1 and v(ãωj ,ωi
, ωj)− v(a∗ωj

, ωj) ≤ −G < 0, so

1− µR(ωj)

µR(ωi)

π∗(s0|ωj)

π∗(s0|ωi)
·G ≥ 0,

which implies
π∗(s0|ωj)

π∗(s0|ωi)
≤ µR(ωi)

µR(ωj)G
≤ 1

p0G
. (36)

Thus, r(0) = 1
p0G

≥ (1− ι) µR(ωi)
µR(ωj)G

.

Then, consider step k ≥ 0. The algorithm chooses the midpoint q = ℓ(k)+r(k)

2
and uses a

signaling scheme satisfying π(k)(s0|ωj)

π(k)(s0|ωi)
= q. When signal s0 is realized:

• if the receiver takes action a∗ωi
, then by the second item of the Lemma 2, q ≤ (1+ ι)

π∗(s0|ωj)

π∗(s0|ωi)
.

The algorithm sets ℓ(k+1) to be q, so ℓ(k+1) satisfies the claim;

• if the receiver does not take action a∗ωi
, then by the first item of Lemma 2, q ≥ (1−ι)

π∗(s0|ωj)

π∗(s0|ωi)
.

The algorithm sets r(k+1) to be q, so r(k+1) satisfies the claim.

Proof of Lemma 1. When Algorithm 1 ends, we have |r(k) − ℓ(k)| ≤ τ . Then, using the above
claim, we have ∣∣∣π∗(s0|ωj)

π∗(s0|ωi)
− ℓ(k)

∣∣∣ ≤ τ + ι
π∗(s0|ωj)

π∗(s0|ωi)
,

which implies

∣∣∣µR(ωi)

µR(ωj)
− ρ̂

∣∣∣ =
∣∣∣π∗(s0|ωj)

π∗(s0|ωi)
− ℓ(k)

∣∣∣ · v(ãωj ,ωi
, ωj)− v(a∗ωi

, ω2)

v(a∗ωi
, ωi)− v(ãωj ,ωi

, ωi)

≤
(
τ + ι

π∗(s0|ωj)

π∗(s0|ωi)

)
· 1
G

≤
(
τ +

δ

Gp0

)
· 1
G

by (36)

≤
(
τ +

γm

(1− γ)G3p30

)
· 1
G

by Lemma 2

≤
(
τ +

γm

(1− γ)G3p30

)
· 1

Gp0
· µR(ωi)

µR(ωj)
.

where the last step is because µR(ωi)
µR(ωj)

≥ p0.
Then, we consider the expected running time of Algorithm 1. Because the difference r(k)−ℓ(k)
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shrinks by a half after each while loop, the number of while loops, k, is at most

k ≤ log2
r(0) − ℓ(0)

τ
= log2

1

Gp0τ
. (37)

Then, we consider the number of periods needed in each while loop. By definition, this is equal to
the number of periods until signal s0 is realized, plus m. Since one of π(k)(s0|ωj) and π(k)(s0|ωi)

is 1 (see Algorithm 1), the probability (according to the information designer’s prior belief) that s0
is realized in each period is at least:

π(k)(s0) = µD(ωi)π
(k)(s0|ωi) + µD(ωj)π

(k)(s0|ωj) ≥ min{µD(ωi), µD(ωj)} ≥ p0.

So by the property of the geometric random variable, the expected number of periods until a signal
s0 is realized is at most

1

π(k)(s0)
≤ 1

p0
,

and the total expected number of periods over k while loops is at most

k ·
( 1

p0
+m

)
≤

( 1

p0
+m

)
log2

1

Gp0τ
.

B.2 PROOF OF LEMMA 2

Proof. Case (i): π(k)(s0|ωj)

π(k)(s0|ωi)
< (1 − ι)

π∗(s0|ωj)

π∗(s0|ωi)
. If the receiver best responds in that period, then his

optimal action will be a∗ωi
, since he is indifferent between a∗ωi

and the first indifferent action ãωj ,ωi

at π∗(s0|ωj)

π∗(s0|ωi)
by definition, and also due to the case with π(k)(s0|ωj)

π(k)(s0|ωi)
<

π∗(s0|ωj)

π∗(s0|ωi)
. Suppose the strategic

receiver deviates to an action a ̸= a∗ωi
instead. Then, he will suffer a loss in the current period, and

will potentially obtain some gain in the future.
Regarding the gain, the signaling schemes used in the next additional m periods are inde-

pendent of the receiver’s current action, and the receiver’s payoff is bounded in [0, 1]. Thus, the
receiver’s total gain in the future is at most

gain ≤ 0 +
T∑

t=m+1

γt · 1 ≤ γm+1

1− γ
.

Then, we compute his loss, denoted by loss(a∗ωi
, a), which is the difference between the receiver’s
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(a) The case of π(k)(s0|ωj)

π(k)(s0|ωi)
< (1− ι)

π∗(s0|ωj)
π∗(s0|ωi)

(b) The case of π(k)(s0|ωj)

π(k)(s0|ωi)
> (1 + ι)

π∗(s0|ωj)
π∗(s0|ωi)

Figure 4: Normalized utility of the receiver for different actions. The x-coordinate is the signaling
ratio π(s0|ωj)

π(s0|ωi)
. Each line corresponds to an action a, with equation

ya(x) = v(a, ωi) +
µR(ωj)

µR(ωi)
· x · v(a, ωj).

payoff of taking action a∗ωi
versus the deviation action a in the current round.

loss(a∗ωi
, a) =

∑
ω∈Ω

Pr
µR,π(k)

[ω|s0]
(
v(a∗ωi

, ω)− v(a, ω)
)

=
µR(ωi)π

(k)(s0|ωi)

π(k)(s0)

(
v(a∗ωi

, ωi)− v(a, ωi)
)
+

µR(ωj)π
(k)(s0|ωj)

π(k)(s0)

(
v(a∗ωi

, ωj)− v(a, ωj)
)
.

Claim 2. loss(a∗ωi
, a) > ιG2p20.

Proof. Consider the graph (Figure 4a) where the horizontal axis is the ratio π(s0|ωj)

π(s0|ωi)
. For each

action a ∈ A, we plot the line representing the receiver’s single-period utility of taking action a

(after a normalization):

ya(x) = v(a, ωi) +
µR(ωj)

µR(ωi)
· x · v(a, ωj), where x =

π(s0|ωj)

π(s0|ωi)
.

By definition, point A is the indifference point between actions a∗ωi
and ãωj ,ωi

, whose x-
coordinate xA =

π∗(s0|ωj)

π∗(s0|ωi)
and y-coordinate yA = ya∗ωi

(xA) = yãωj,ωi
(xA). Let dx(a∗ωi

, a) =

ya∗ωi
(x)− ya(x) be the vertical distance between lines ya∗ωi

and ya at x-coordinate x. Because A is
the first indifference point, line ya is below line ya∗ωi

in the [0, xA] segment: namely, d0(a∗ωi
, a) > 0

and dxA
(a∗ωi

, a) ≥ 0. Consider the line connecting C = (0, ya(0) = v(a, ωi)) to A, with B being
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the point on this line at x-coordinate

xB =
π(k)(s0|ωj)

π(k)(s0|ωi)
≤ (1− ι)

π∗(s0|ωj)

π∗(s0|ωi)
= (1− ι)xA.

Since B is between line ya and line ya∗ωi
, dxB

(a∗ωi
, a) ≥ BD. Triangle ABD is similar to triangle

ACE, so

BD = CE · AB
AC

= CE · xA − xB

xA − 0
=

(
v(a∗ωi

, ωi)− v(a, ωi)
)
·

π∗(s0|ωj)

π∗(s0|ωi)
− π(k)(s0|ωj)

π(k)(s0|ωi)

π∗(s0|ωj)

π∗(s0|ωi)

> G · ι.

Therefore,

Gι < dxB
(a∗ωi

, a) = v(a∗ωi
, ωi)+

µR(ωj)

µR(ωi)

π(k)(s0|ωj)

π(k)(s0|ωi)
v(a∗ωi

, ωj)−v(a, ωi)−
µR(ωj)

µR(ωi)

π(k)(s0|ωj)

π(k)(s0|ωi)
v(a, ωj).

Multiplying both sides by µR(ωi)π
(k)(s0|ωi)

π(k)(s0)
,

Gι
µR(ωi)π

(k)(s0|ωi)

π(k)(s0)
<

µR(ωi)π
(k)(s0|ωi)

π(k)(s0)
(v(a∗ωi

, ωi)− v(a, ωi)) +
µR(ωj)π

(k)(s0|ωj)

π(k)(s0)
(v(a∗ωi

, ωj)− v(a∗ωi
, ωj))

= loss(a∗ωi
, a).

We note that µR(ωi)π
(k)(s0|ωi)

π(k)(s0)
≥ Gp20, because µR(ωi) ≥ p0, π(k)(s0) ≤ 1, π(k)(s0|ωi) = min{1, 1

q
} ≥

Gp0 from Algorithm 1. Thus, we obtain loss(a∗ωi
, a) ≥ ιG2p20, which proves the claim.

Comparing gain and loss, given ι = γm

(1−γ)G2p20
, we have

loss(a∗ωi
, a) > ιG2p20 >

γm+1

1− γ
≥ gain.

Thus, the strategic receiver should not take a for any a ̸= a∗ωi
, and thus takes a∗ωi

.
Case (ii): π(k)(s0|ωj)

π(k)(s0|ωi)
> (1+ι)

π∗(s0|ωj)

π∗(s0|ωi)
. See Figure 4b for an illustration. In this case, the optimal

action for a myopic receiver is not a∗ωi
, because π(k)(s0|ωj)

π(k)(s0|ωi)
> (1 + ι)

π∗(s0|ωj)

π∗(s0|ωi)
. If a strategic receiver

takes action a∗ωi
in the current period, then he suffers a loss in the current period and potentially

obtains some gain in the future. As in the previous case, the gain is at most γm+1

1−γ
. Then, consider
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the loss. We lower bound the loss by the utility difference between ã and a∗ωi
in the current period:

loss(a∗ωi
) ≥

∑
ω∈Ω

Pr
µR,π(k)

[ω|s0]
(
v(ãωj ,ωi

, ω)− v(a∗ωi
, ω)

)
=

µR(ωi)π
(k)(s0|ωi)

π(k)(s0)

(
v(ã, ω1)− v(a∗ωi

, ω1)
)
+

µR(ω2)π
(k)(s0|ω2)

π(k)(s0)

(
v(ãωj ,ωi

, ωj)− v(a∗ωi
, ωj)

)
=

µR(ωi)π
(k)(s0|ωi)

π(k)(s0)

(
v(ã, ωi)− v(a∗ωi

, ωi) +
µR(ωj)

µR(ωi)

π(k)(s0|ωj)

π(k)(s0|ωi)

(
v(ãωj ,ωi

, ωj)− v(a∗ωi
, ωj)

))
=

µR(ωi)π
(k)(s0|ωi)

π(k)(s0)
B′D′ (see Figure 4b).

Because triangle AB′D′ is similar to triangle AC ′E, we have

B′D′ = C ′E · AB
′

AC ′ =
(
v(a∗ωi

, ωi)− v(a, ωi)
)
·

π(k)(s0|ωj)

π(k)(s0|ωi)
− π∗(s0|ωj)

π∗(s0|ωi)

π∗(s0|ωj)

π∗(s0|ωi)

> Gι.

Same as the previous case, µR(ωi)π
(k)(s0|ωi)

π(k)(s0)
≥ Gp20. Therefore, loss(a∗ωi

) > G2p20ι >
γm+1

1−γ
≥ gain,

given ι = γm

(1−γ)G2p20
. So, the strategic receiver should not take a∗ωi

.

B.3 PROOF OF LEMMA 3

Lemma 16. Let ε′ = 1
Gp0

(
τ + γm

(1−γ)G3p30

)
≤ 1

2
. For any two states ωi, ωj ∈ Ω, the output ρ̂ij of

Algorithm 2 satisfies ρ̂ij ∈ (1± 4ε′) µR(ωi)
µR(ωj)

. Algorithm 2 terminates in at most 2( 1
p0

+m) log2
1

Gp0τ

periods in expectation.

Proof. The proof uses Lemma 1 twice. See details below. Let ε′ = 1
Gp0

(
τ + γm

(1−γ)G3p30

)
. If (ωi, ωj)

is a pair of distinguishable states, then Lemma 1 shows that the estimate ρ̂ij returned by Algorithm
1 satisfies ρ̂ij ∈ (1± ε′) µR(ωi)

µR(ωj)
.

If (ωi, ωj) is not a pair of distinguishable states, then by Lemma 1, we have the ratio estimates
ρ̂ik ∈ (1± ε′) µR(ωi)

µR(ωk)
and ρ̂jk ∈ (1± ε′)

µR(ωj)

µR(ωk)
. So,

ρ̂ij =
ρ̂ik
ρ̂jk

≥
µR(ωi)
µR(ωk)

(1− ε′)

µR(ωj)

µR(ωk)
(1 + ε′)

≥ µR(ωi)

µR(ωj)
(1− 2ε′)

and

ρ̂ij =
ρ̂ik
ρ̂jk

≤
µR(ωi)
µR(ωk)

(1 + ε′)

µR(ωj)

µR(ωk)
(1− ε′)

≤ µR(ωi)

µR(ωj)
(1 + 4ε′)
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given ε′ ≤ 1
2
. The multiplicative error of ρ̂ij is thus at most 4ε′.

Algorithm 2 needs twice the running time of Algorithm 1, which is at most 2( 1
p0
+m) log2

1
Gp0τ

periods in expectation by Lemma 1.

Lemma 17. Suppose 1
Gp0

(
τ + γm

(1−γ)G3p30

)
≤ 1

2
.

• The estimation µ̂ returned by Algorithm 3 satisfies ∥µ̂− µR∥1 ≤ 12|Ω|
Gp30

(
τ + γm

(1−γ)G3p30

)
.

• The expected running time of Algorithm 3 is at most 2(|Ω| − 1)( 1
p0

+m) log2
1

Gp0τ
periods.

Proof. By Lemma 16, the estimation ρ̂i1 satisfies ρ̂i1 ∈ (1 ± 4ε′) µR(ωi)
µR(ω1)

with ε′ = 1
Gp0

(
τ +

γm

(1−γ)G3p30

)
. Because µR(ωi)

µR(ω1)
≤ 1

p0
, we have

∣∣∣ρ̂i1 − µR(ωi)
µR(ω1)

∣∣∣ ≤ 4ε′

p0
.

Since µR is a probability distribution, we have 1 =
∑

ω∈Ω µR(ω) = µR(ω1)+µR(ω1)
∑|Ω|

i=2
µR(ωi)
µR(ω1)

,
so

µR(ω1) =
1

1 +
∑|Ω|

i=2
µR(ωi)
µR(ω1)

.

Because the function f(x) = 1
1+x

is 1-Lipschitz (|f ′(x)| = 1
(1+x)2

≤ 1), we have

|µ̂(ω1)− µR(ω1)| =
∣∣∣ 1

1 +
∑|Ω|

i=2 ρ̂i1
− 1

1 +
∑|Ω|

i=2
µR(ωi)
µR(ω1)

∣∣∣ ≤ ∣∣∣ |Ω|∑
i=2

ρ̂i1 −
|Ω|∑
i=2

µR(ωi)
µR(ω1)

∣∣∣ ≤ |Ω|4ε′
p0
.

Then, for every i = 2, . . . , |Ω|.

|µ̂(ωi)− µR(ωi)| =
∣∣ρ̂i1µ̂(ω1)− µR(ωi)

µR(ω1)
µR(ω1)

∣∣
≤

∣∣ρ̂i1 − µR(ωi)
µR(ω1)

∣∣µ̂(ω1) + µR(ωi)
µR(ω1)

∣∣µ̂(ω1)− µR(ω1)
∣∣

≤ 4ε′

p0
µ̂(ω1) + µR(ωi)

µR(ω1)
|Ω|4ε′

p0
.
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Therefore,

∥µ̂− µR∥1 = |µ̂(ω1)− µR(ω1)|+
|Ω|∑
i=2

|µ̂(ωi)− µR(ωi)|

≤ |Ω|4ε′
p0

+ |Ω|4ε′
p0
µ̂(ω1) + |Ω|4ε′

p0

|Ω|∑
i=2

µR(ωi)
µR(ω1)

≤ |Ω|8ε′
p0

+ |Ω|4ε′
p0

1
p0

≤ 12|Ω|ε′
p20

= 12|Ω|
Gp30

(
τ + γm

(1−γ)G3p30

)
,

which proves the first claim of Lemma 17.
Because Algorithm 3 runs Algorithm 2 for |Ω| − 1 times and the expected running time of

Algorithm 2 is at most 2( 1
p0

+m) log2
1

Gp0τ
periods (by Lemma 16), the expected running time of

Algorithm 2 is at most

2(|Ω| − 1)( 1
p0

+m) log2
1

Gp0τ
.

periods.

Proof of Lemma 3. Lemma 3 follows from Lemma 17 by plugging in

τ =
Gp30ε

24|Ω|
, m =

⌈ 1

ln(1/γ)
ln(

24|Ω|
(1− γ)G4p60ε

)
⌉
.

B.4 PROOF OF LEMMA 4

Let µ̂ ∈ ∆(Ω) be a receiver prior satisfying minω∈Ω µ̂(ω) ≥ p0 > 0. Let B1(µ̂, ε) = {µ :

∥µ − µ̂∥1 ≤ ε} be the set of priors within distance ε to µ̂. Suppose ε ≤ p20D

4
. Let π be a direct

signaling scheme. We want to construct another direct signaling scheme π̃ in two steps: (1) First,
construct a non-direct signaling scheme π̃◦. (2) Then, convert π̃◦ into a direct signaling scheme π̃

that still satisfies the requirements of the lemma.

Step (1): Construct a non-direct signaling scheme π̃◦. Let δ satisfy

2ε
p0D

≤ δ ≤ p0
2
.
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Let Pµ̂,π(a) =
∑

ω∈Ω µ̂(a)π(a|ω) be the unconditional probability that π sends signal a under prior
µ̂. Let µ̂a,π ∈ ∆(Ω) be the posterior belief induced by signal a under signaling scheme π and prior
µ̂:

µ̂a,π(ω) =
µ̂(ω)π(a|ω)
Pµ̂,π(a)

, ∀ω ∈ Ω.

According to Assumption 2, there exists a belief ηa ∈ ∆(Ω) for which Eω∼ηa [v(a, ω)−v(a′, ω)] ≥
D, ∀a′ ̸= a. Consider the convex combination of µ̂a,π and ηa with coefficients 1− δ, δ:

ξa = (1− δ)µ̂a,π + δηa. (38)

By the linearity of expectation, we have

Eω∼ξa [v(a, ω)− v(a′, ω)] = (1− δ)Eω∼µ̂a,π [v(a, ω)− v(a′, ω)] + δEω∼ηa [v(a, ω)− v(a′, ω)]

≥ (1− δ)Eω∼µ̂a,π [v(a, ω)− v(a′, ω)] + δD. (39)

Let ξ =
∑

a∈A Pµ̂,π(a)ξa ∈ ∆(Ω), and write µ̂ as the convex combination of ξ and another belief
χ ∈ ∆(Ω), with some coefficient y ∈ [0, 1]:

µ̂ = (1− y)ξ + yχ =
∑
a∈A

(1− y)Pµ̂,π(a)ξa + yχ. (40)

Lemma 18 (Proposition 1 of Zu, Iyer, and Xu, 2021). If δ ≤ p0
2

, then there exist χ on the boundary

of ∆(Ω) and y ≤ δ
p0

≤ 1
2

that satisfy (40).

Since (40) is a convex decomposition of the prior µ̂, according to Kamenica and Gentzkow,
2011, there exists a signaling scheme π̃◦ that induces posterior ξa with total probability (1 −
y)Pµ̂,π(a), ∀a ∈ A, and induces the posterior that puts all probability on ω with total probabil-
ity yχ(ω), ∀ω ∈ Ω. Namely, π̃◦ has signal space S = A ∪ Ω and conditional probability

π̃◦(s|ω) =


(1−y)Pµ̂,π(a)ξa(ω)

µ̂(ω)
for s = a ∈ A;

yχ(ω)
µ̂(ω)

for s = ω ∈ Ω;

0 otherwise.

(41)

It is not hard to verify that, under prior µ̂ and signaling scheme π̃◦, the posterior induced by signal
a ∈ A is equal to ξa, and the posterior induced by signal ω is the deterministic distribution on ω.

Claim 3. For any prior of the receiver µ ∈ B1(µ̂, ε), given any action recommendation a ∈ A
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from π̃◦, the receiver’s posterior µa,π̃◦ satisfies

Eω∼µa,π̃◦ [v(a, ω)− v(a′, ω)] ≥ (1− δ)Eω∼µ̂a,π [v(a, ω)− v(a′, ω)] + δD − 2ε
p0
, ∀a′ ∈ A \ {a}.

And when π̃◦ sends signal ω ∈ Ω, the receiver will believe that the state is ω deterministically.

Proof. Under signaling scheme π̃◦, let µa,π̃◦ , ξa be the posteriors induced by signal a from priors
µ, µ̂. By the continuity of posterior (Lemma 14), we have ∥µa,π̃◦ −ξa∥1 ≤ 2

p0
∥µ− µ̂∥1 ≤ 2ε

p0
. Then,

since the receiver’s utility is in [0, 1], for any action a′ ̸= a, we have

Eω∼µa,π̃◦ [v(a, ω)− v(a′, ω)] ≥ Eω∼ξa [v(a, ω)− v(a′, ω)]− 2ε
p0

by (39) ≥ (1− δ)Eω∼µ̂a,π [v(a, ω)− v(a′, ω)] + δD − 2ε
p0
.

We show that the recommendation part of signaling scheme π̃◦ is close to π, in the following
sense:

Claim 4. For every ω ∈ Ω, the ℓ1 distance ∥π̃◦(·|ω)−π(·|ω)∥1 =
∑

a∈A

∣∣π̃◦(a|ω)−π(a|ω)
∣∣ ≤ 3δ

p0
.

Proof. By definition,

∑
a∈A

∣∣π̃◦(a|ω)− π(a|ω)
∣∣ =

∑
a∈A

∣∣∣(1− y)Pµ̂,π(a)ξa(ω)

µ̂(ω)
− Pµ̂,π(a)µ̂a(ω)

µ̂(ω)

∣∣∣
≤

∑
a∈A

(
Pµ̂,π(a)

µ̂(ω)
·
∣∣ξa(ω)− µ̂a(ω)

∣∣ + y · Pµ̂,π(a)ξa(ω)

µ̂(ω)

)
by (38) and y ≤ 1

2
≤

∑
a∈A

(
Pµ̂,π(a)

µ̂(ω)
· δ + 2y · (1− y)Pµ̂,π(a)ξa(ω)

µ̂(ω)

)
.

We have
∑

a∈A Pµ̂,π(a) = 1 and
∑

a∈A(1 − y)Pµ̂,π(a)ξa(ω) ≤ µ̂(ω) by (40). So, the above is at
most

≤ 1

µ̂(ω)
· δ + 2y · 1 ≤ δ

p0
+ 2

δ

p0
=

3δ

p0
,

given y ≤ δ
p0

.

Then, we show that the information designer’s utility under scheme π̃◦ is close to her utility
under π:

Claim 5. The designer’s utility U(π̃◦, ρob;µD) ≥ U(π, ρob;µD)− 3δ
p0

.
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Proof. For the non-direct signaling scheme π̃◦, the notation ρob means: when π̃◦ recommends
action, the receiver takes the recommended action, and when π̃◦ reveals the state, the receiver
takes an optimal action for that state. The designer’s expected utility is thus

U(π̃◦, ρob;µD) =
∑
ω∈Ω

µD(ω)
(∑

a∈A

π̃◦(a|ω)u(a, ω) + π̃◦(ω|ω)u(a∗ω, ω)
)

≥
∑
ω∈Ω

µD(ω)
∑
a∈A

π̃◦(a|ω)u(a, ω)

≥ U(π, ρob;µD)− 3δ
p0

by Claim 4 and U is 1-Lipschitz in π (Lemma 13).

Step (2): Convert π̃◦ into a direct signaling scheme π̃. Then, we convert π̃◦ (whose signal
space is A ∪ Ω) into a direct signaling scheme π̃ (whose signal space is A) by coalescing the
signals. Specifically, for each state ω ∈ Ω, and action a ∈ A, let π̃ send signal a when π̃◦ sends
signal a and when π̃◦ sends signal ω if the receiver’s optimal action a∗ω ∈ argmaxa∈A v(a, ω) for
state ω equals a:

π̃(a|ω) = π̃◦(a|ω) + 1[a = a∗ω] · π̃◦(ω|ω). (42)

By the coalescing lemma 15, when π̃ recommends action a, we have: for a receiver with any prior
µ ∈ B1(µ̂, ε), the posterior µa,π̃ satisfies

Eω∼µa,π̃

[
v(a, ω)− v(a′, ω)

]
≥ min

{
Eω∼µa,π̃◦

[
v(a, ω)− v(a′, ω)

]
, 0

}
(by Claim 3) ≥ min

{
(1− δ)Eω∼µ̂a,π

[
v(a, ω)− v(a′, ω)

]
+ δD − 2ε

p0
, 0

}
.

We verify that π̃ satisfies the condition for the receiver’s posterior in Lemma 4. There are two
cases:

• If Eω∼µ̂a,π

[
v(a, ω) − v(a′, ω)

]
≥ 0, then because δD − 2ε

p0
≥ 0 by our condition on δ, we

have min
{
(1− δ)Eω∼µ̂a,π

[
v(a, ω)− v(a′, ω)

]
+ δD − 2ε

p0
, 0

}
= 0, so

Eω∼µa,π̃

[
v(a, ω)− v(a′, ω)

]
≥ 0 = min

{
Eω∼µ̂a,π

[
v(a, ω)− v(a′, ω)

]
+ δD − 2ε

p0
, 0

}
.

• If Eω∼µ̂a,π

[
v(a, ω)− v(a′, ω)

]
< 0, then we have 0 > (1− δ)Eω∼µ̂a,π

[
v(a, ω)− v(a′, ω)

]
≥
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Eω∼µ̂a,π

[
v(a, ω)− v(a′, ω)

]
. So,

Eω∼µa,π̃

[
v(a, ω)− v(a′, ω)

]
≥ min

{
(1− δ)Eω∼µ̂a,π

[
v(a, ω)− v(a′, ω)

]
+ δD − 2ε

p0
, 0

}
≥ min

{
Eω∼µ̂a,π

[
v(a, ω)− v(a′, ω)

]
+ δD − 2ε

p0
, 0

}
.

In both cases, π̃ satisfies the condition.
We then verify the condition for the designer’s utility, which is U(π̃, ρob;µD) ≥ U(π, ρob;µD)−

3δ
p0

. It directly follows from Claim 5, which shows U(π̃◦, ρob;µD) ≥ U(π, ρob;µD) − 3δ
p0

, and
Lemma 15, which shows U(π̃◦, ρob;µD) = U(π̃, ρob;µD).

Finally, we verify the closeness condition between π̃ and π. For every ω ∈ Ω,∑
a∈A

∣∣π̃(a|ω)− π(a|ω)
∣∣ ≤

∑
a∈A

(∣∣π̃◦(a|ω)− π(a|ω)
∣∣+ 1[a = a∗ω] · π̃◦(ω|ω)

)
by (42)

≤ 3δ
p0

+ y χ(ω)
µ̂(ω)

by Claim 4 and Equation (41)

≤ 3δ
p0

+ δ
p20

because y ≤ δ
p0

and µ̂(ω) ≥ p0

≤ 4δ
p20
.

C OMITTED PROOFS IN SECTION 4

C.1 PROOF OF LEMMA 5

Fix any feasible designer strategy σ = (π
(t)
σ )Tt=1 and let the receiver play a (history–dependent)

best response ϕ∗(σ, µR). For each period t and realized public history ht (signals and actions up to
t−1), π(t)

σ induces a posterior µt(· | ht, st) after signal st ∼ π
(t)
σ (· | ω, ht) is sent under µR. Let

Bt(ht, st) ⊆ A be the nonempty set of myopic best replies at (ht, st):

Bt(ht, st) := argmax
a∈A

Vt(a;µt(· | ht, st)),

and fix a measurable tie–breaking rule τt so that bt(ht, st) := τt(Bt(ht, st)) ∈ Bt(ht, st).

Direct, dynamically persuasive transformation. Define a direct signal in period t by post–
processing the original signal via

gt : st 7→ a′t = bt(ht, st) ∈ A,

and set π(t)

σd (· | ω, ht) :=
(
gt ◦ π(t)

σ (· | ω, ht)
)
, where σd = (π

(t)

σd )
T
t=1 denotes the resulting strategy.

Because gt is a (history–dependent) garbling of st, the posterior belief µt(· | ht, st) induced by π
(t)
σ

is the same posterior belief the receiver holds about states upon receiving the recommendation a′t =
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gt(st) under strategy σd (Bayes plausibility is preserved by post–processing). By construction, a′t
maximizes Vt(·;µt), so obeying the recommendation is optimal for the receiver at each (ht, a

′
t).

Therefore there is a best response ϕob under σd that obeys the recommendation every period. That
is, ϕob = ϕ∗(σd, µR) and σd is dynamically persuasive.

Outcome equivalence and optimality. Consider the outcome path generated by (σ, ϕ∗(σ, µR)).
At each (ht, st), the action actually taken is some at ∈ Bt(ht, st). Under (σd, ϕob), the action
taken at the same (ht, st) is exactly a′t = bt(ht, st) ∈ Bt(ht, st). Hence, conditional on (ω, ht, st),
the action under σd is a selection from the same set of best replies as under σ; in particular, the
receiver payoff is weakly higher and the distribution over next–period histories (and thus all future
posteriors) is preserved. Therefore the designer’s expected payoff is unchanged:

UT (σ
d, ϕob;µD) = UT (σ, ϕ

∗(σ, µR);µD).

Applying that transformation to an optimal σ yields a history–dependent, dynamically persuasive
direct strategy σ∗ that attains the dynamic optimum:

U∗∗
T (I) = UT (σ

∗, ϕob;µD) with ϕob = ϕ∗(σ∗, µR).

C.2 PROOF OF LEMMA 6

Fix an optimal DDP strategy σ∗ (possibly history-dependent) with an obedient receiver strategy
ϕob, over a finite horizon t = 1, . . . , T . Let the state process {ωt}Tt=1 be i.i.d. with (true) marginal
λ ∈ ∆(Ω), independent of past play. For each period t and action a ∈ A, define the on-path joint
and conditional probabilities induced by (σ, ϕob):

Qt(ω, a) := Pr
σ,ϕob

(
ωt = ω, at = a

)
, Pt(a | ω) := Pr

σ,ϕob

(
at = a | ωt = ω

)
,

where at denotes the action recommended (and, on-path, taken) at t. By the law of total probability,
Qt(ω, a) = λ(ω)Pt(a | ω).

For each t, define a history-independent direct scheme π
(t)
σ̃ : Ω → ∆(A) by

π̃(t)(a | ω) := Pt(a | ω) (choose arbitrarily on {ω : λ(ω) = 0}).

Let σ̃ = (π
(1)
σ̃ , . . . , π

(T )
σ̃ ), and keep the same off-path continuation rule as under σ∗: following any

deviation, switch to the no-information punishment policy as in σ∗ for the remainder of the game.
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By construction,

Pr
σ̃,ϕob

(
ωt = ω, at = a

)
= λ(ω) π

(t)
σ̃ (a | ω) = λ(ω)Pt(a | ω) = Qt(ω, a),

so the joint law of (ωt, at) is identical under (σ∗, ϕob) and (σ̃, ϕob) for every t. Because payoffs
are additively separable across periods, the designer’s total expected payoff is the same under σ̃ as
under σ∗. Thus, σ̃ is optimal if σ is.

Fix a period t and a recommended action a with Pr(at = a) > 0. Let µR be the receiver’s
prior. Under σ̃, Bayes’ rule gives the posterior

µσ̃
t (ω | a) =

µR(ω)π
(t)
σ̃ (a | ω)∑

ω′ µR(ω′) π
(t)
σ̃ (a | ω′)

=
µR(ω)Pt(a | ω)∑
ω′ µR(ω′)Pt(a | ω′)

.

The right-hand side is exactly the average of the posteriors induced by (σ∗, ϕob) at all on-path his-
tories that yield recommendation a, weighted by their probability conditional on a (law of iterated
expectations). So we have

µσ̃
t (· | a) = µσ∗

t (· | a)

where µσ∗
t (· | a) is the averaged posterior faced by the receiver under (σ∗, ϕob) when recommen-

dation a is observed.
Let W g

t+1 (resp. W p
t+1) denote the receiver’s continuation utility from t+1 onward on the obe-

dience (resp. punishment) path. By our construction of off-path behavior, these continuations are
the same under σ̃ as under σ:

W g,σ̃
t+1 = W g,σ∗

t+1 , W p,σ̃
t+1 = W p,σ∗

t+1 .

Therefore, for every deviation a′ ̸= a, the period-t one-shot deviation inequality under σ̃,

Eω∼µσ̃
t (·|a)

[
v(a, ω)− v(a′, ω)

]
+

(
W g,σ̃

t+1 −W p,σ̃
t+1

)
≥ 0,

coincides with the corresponding inequality under (σ∗, ϕob), which holds because σ is dynamically
persuasive. By the one-shot deviation principle, obedience is optimal at all on-path information
sets under σ̃ as well.

Combining the above, σ̃ is an optimal DDP strategy and is history-independent by construction.

C.3 PROOF OF LEMMA 8

To begin, we consider the restriction to history-independent DDP.
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By Proposition 1, the benchmark

U∗∗
T (I) = max

σ
UT (σ;ϕob, µD)

is attained by some history-independent, dynamically persuasive DDP strategy σ = (π
(1)
σ , . . . , π

(T )
σ ).

So we may restrict attention to this class and impose the dynamic persuasiveness constraint in its
posterior form (14).

We then consider a promise state and two primitive constraints.
For any such σ, define the promised payoff above the uninformed utility from period t to T as

gt(σ) :=
T∑

t′=t

γ t′−t
(
V (π(t′)

σ , ρob;µR)− Vuninformed(µR)
)

(≥ 0).

Dynamic persuasiveness (14) at period t recommendation a is equivalent to

E
ω∼µR(·|a,π(t)

σ )

[
v(a, ω)− v(a′, ω)

]
+ γ · gt+1(σ) ≥ 0 ∀a′ ∈ A and on-path a, (43)

i.e., a posterior single-period deviation inequality with continuation buffer γ · gt+1. Moreover,
gt(σ) satisfies the constraint of the receiver’s ex ante obedience

(
V (π(t)

σ , ρob;µR)− Vuninformed(µR)
)
+ γ · gt+1(σ) ≥ gt(σ). (44)

Then we show that the dynamic programming solution upper bounds the benchmark.
We show by backward induction on t that for every feasible history-independent dynamically

persuasive σ,
T∑

t′=t

U(π(t′)
σ , ρob;µD) ≤ F

(
t, gt(σ)

)
. (45)

For t = T , feasibility requires (43) (which reduces to static persuasiveness) and (44) with gT ,
which is exactly the constraint of (17a). Thus, we have U(π

(T )
σ , ρob;µD) ≤ F (T, gT (σ)).

Assume (45) holds for t+1. At period t, the pair
(
π
(t)
σ , gt+1(σ)

)
satisfies the constraints of the

Bellman step (18) with g = gt(σ) by (43) and (44). Therefore,

T∑
t′=t

U(π(t′)
σ , ρob;µD) = U(π(t)

σ , ρob;µD) +
T∑

t′=t+1

U(π(t′)
σ , ρob;µD)

≤ U(π(t)
σ , ρob;µD) + F

(
t+1, gt+1(σ)

)
≤ F

(
t, gt(σ)

)
,
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where the last inequality uses the maximization in (18). Taking t = 1 and using that F (1, g) is
nonincreasing in g (tightening the promise cannot increase designer value), we get

UT (σ;ϕob, µD) ≤ F (1, g1(σ)) ≤ F (1, 0).

Maximizing over feasible σ yields U∗∗
T (I) ≤ F (1, 0).

We finally show that the dynamic programming solution is tight.
Let {(π(t)

σ∗ , g∗t+1)}Tt=1 be maximizers in (17a) and (18) along an optimal path starting at F (1, 0)

(set g∗1 := 0). By definition of F (t+1, g∗t+1), there exists a tail strategy (π
(t+1)
σ∗ , . . . , π

(T )
σ∗ ) delivering

the promise g∗t+1 and satisfying dynamic persuasiveness from t+1 onward. Concatenating these
choices yields a history-independent DDP strategy σ∗ = (π

(t)
σ∗ )Tt=1.

We check the feasibility of σ∗: the pair (π(t) ∗, g∗t+1) satisfies (18):

V (π
(t)
σ∗ , ρob;µR)− Vuninformed(µR) + γ · g∗t+1 ≥ g∗t , (46)

E
ω∼µR(·|a,π(t)

σ∗ )

[
v(a, ω)− v(a′, ω)

]
+ γ · g∗t+1 ≥ 0 ∀a′ ∈ A, ∀ on-path a. (47)

Thus promised utilities are kept (46). For dynamic persuasiveness, fix t and an on-path recom-
mendation a. The deviation at period t changes only the current action. Then, the DDP strategy
switches to the (uninformative) punishment, whose continuation equals the uninformed payoff,
while obedience secures an extra γ · g∗t+1 above that baseline by construction. Thus, the receiver’s
obedience minus deviation payoff is

E[v(a, ω)− v(a′, ω) | a]︸ ︷︷ ︸
current gap

+ γ g∗t+1︸ ︷︷ ︸
continuation gap

≥ 0 (by (47)),

so obedience is optimal at every on-path history, and thus σ∗ is dynamically persuasive.
Finally, by the Bellman equalities,

UT (σ
∗;ϕob, µD) =

T∑
t=1

U(π
(t)
σ∗ , ρob;µD) = F (1, 0).

Combining with the dynamic programming solution upper bounding the benchmark, we obtain
U∗∗
T (I) = F (1, 0), attained by the history-independent, dynamically persuasive DDP strategy σ∗.

C.4 PROOF OF PROPOSITION 4

Proposition 4. For any instance I and any T ≥ 1, the designer’s dynamic benchmark U∗∗
T (I) is

weakly increasing in the receiver’s discount factor γ ∈ [0, 1).
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Proof. Fix γ′ < γ′′. Consider any DDP strategy σ that is dynamically persuasive (i.e., induces
obedience) under γ′, together with the receiver’s obedient strategy ϕob. The one-step obedience
constraints compare current recommended action payoffs with any deviation payoffs plus the dis-
counted continuation values. When γ increases from γ′ to γ′′, the continuation part of these con-
straints is (weakly) upweighted, making obedience easier to sustain. Hence any (σ, ϕob) feasible
at γ′ remains feasible at γ′′.

Therefore the feasible set of DDP+obedience outcomes at γ′′ contains that at γ′, so the de-
signer’s optimal value cannot decrease:

U∗∗
T (I; γ′) ≤ U∗∗

T (I; γ′′).

Since γ′, γ′′ were arbitrary with γ′ < γ′′, U∗∗
T (I) is weakly increasing in γ.

C.5 PROOF OF PROPOSITION 3

Proof. Let π∗ be an optimal signaling scheme that solves problem (22), with corresponding de-
signer payoff U(π∗, ρob;µD) = U∗

IR.
Proof of upper bound 1

T
U∗∗
T (I; γ) ≤ U∗

IR. By Proposition 1, the dynamic benchmark U∗∗
T (I; γ)

can be achieved by some history-independent DDP strategies σ = (π(t))Tt=1 that is dynamically
persuasiveness. Define gt =

∑T
t′=t γ

t′−t
(
V (π(t′), ρob;µR)− Vuninformed(µR)

)
. By dynamic persua-

siveness, we have gt ≥ 0. We also note that

V (π(t), ρob;µR)− Vuninformed(µR) + γgt+1 = gt. (48)

Let π̄ := 1
T

∑T
t=1 π

(t) be the average signaling scheme of the DDP strategy σ. We will show∑T
t=1

[
V (π(t), ρob;µR) − Vuninformed(µR)

]
≥ 0. To see that, first, summing Eq. (48) over t =

1, ..., T ,
T∑
t=1

[
V (π(t), ρob;µR)− Vuninformed(µR)

]
+ γ

T∑
t=1

gt+1 =
T∑
t=1

gt.

Rearranging,

T∑
t=1

[
V (π(t), ρob;µR)− Vuninformed(µR)

]
=

T∑
t=1

gt − γ
T∑
t=1

gt+1 = g1 + (1− γ)
T∑
t=2

gt.

Because g1, gt ≥ 0 and γ ≤ 1, we have

T∑
t=1

[
V (π(t), ρob;µR)− Vuninformed(µR)

]
≥ 0.
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This means that the average signaling scheme π satisfies the receiver’s individual rationality con-
straint in optimization problem (22), so it is a feasible solution, and the designer’s payoff is at
most

U(π, ρob;µD) ≤ U∗
IR.

By linearity, U(π, ρob;µD) =
1
T

∑T
t=1 U(π(t), ρob;µD) =

1
T
U∗∗
T (I; γ). So 1

T
U∗∗
T (I; γ) ≤ U∗

IR.
Proof of lower bound limγ→1 limT→∞

1
T
U∗∗
T (I) ≥ U∗

IR. Let πfull be the “full-information”
signaling scheme that reveals the optimal action a∗ω to the receiver at every state ω ∈ Ω, which
gives the receiver expected payoff V (πfull, ρob;µR). Under Assumptions 1 and 3, it is easy to show
that V (πfull, ρob;µR) − Vuninformed(µR) ≥ p0G. Let π′ be a direct signaling scheme obtained by
mixing π∗ with weight 1 − δ′ and πfull with weight δ′. Consider the DDP strategy σ′ = (π′)Tt=1

that repeats π′ unless the receiver has deviated. We claim that, under σ′, the receiver is willing
to obey the recommended actions in every period t from 1 to T −

√
T : to see this, given the

recommendation at period t, the receiver’s obedient payoff from period t to T is at least

γt · 0 +
T∑

t′=t+1

γt′V (π′, ρob;µR).

If the receiver deviates from the recommendation in period t, he will obtain payoff at most 1 in
period t and be punished starting from period t+ 1, so his total payoff is at most

γt · 1 +
T∑

t′=t+1

γt′Vuninformed(µR).
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The difference is

γt · 0 +
T∑

t′=t+1

γt′V (π′, ρob;µR)− γt · 1−
T∑

t′=t+1

γt′Vuninformed(µR)

= −γt +
T∑

t′=t+1

γt′
[
V (π′, ρob;µR)− Vuninformed(µR)

]
= −γt +

T∑
t′=t+1

γt′
[
(1− δ′)

(
V (π∗, ρob;µR)− Vuninformed(µR)︸ ︷︷ ︸

≥0

)
+ δ′

(
V (πfull, ρob;µR)− Vuninformed(µR)︸ ︷︷ ︸

≥p0G

)]

≥ −γt +
T∑

t′=t+1

γt′δ′p0G

= −γt + δ′p0G · γt+1 · 1−γT−t

1−γ

≥ 0

by choosing δ′ = 1−γ
p0Gγ(1−γT−t)

. Note that δ′ → 1−γ
p0Gγ

→ 0 as T → ∞ and γ → 1. This means that
the receiver will obey the recommendations from period 1 to period T −

√
T . So, the designer’s

average payoff is at least

1

T
U(σ′, ϕ∗(σ′);µD) ≥

1

T

( T−
√
T∑

t=1

U(π′, ρob;µD) + 0

)

≥ 1

T

( T−
√
T∑

t=1

(1− δ′)U(π∗, ρob;µD) + 0

)
=

T −
√
T

T
(1− δ′) · U(π∗, ρob;µD)

→ U(π∗, ρob;µD)

as T → ∞ and γ → 1, where the last step is because δ′ → 0.

D OMITTED PROOFS IN SECTION 5

D.1 PROOF OF LEMMA 9

Proof. Let πfull be the “full revelation” signaling scheme that reveals the optimal action a∗ω =

maxa∈A v(a, ω) for the receiver for every state ω ∈ Ω. By Assumption 3, πfull is unique. Let
∥πσ̂ − πfull∥ = maxω∈Ω ∥πσ̂(·|ω)− πfull(·|ω)∥1 be the matrix ℓ1-distance between direct signaling
schemes π and πfull. Let θ =

√
8δ
p30G

.
Case (1): ∥πσ̂−πfull∥ ≤ θ. In this case, we let πσ̃ be πfull. Because πfull is persuasive regardless
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of the receiver’s prior, we immediately have

Eω∼µ(·|a,πσ̃)

[
v(a, ω)− v(a′, ω)

]
≥ 0 ≥ min

{
Eω∼µ̂(·|a,πσ̂)

[
v(a, ω)− v(a′, ω)

]
+ δD − 2ε

p0
, 0

}
,

which satisfies the first claim of Lemma 9. The receiver’s utility satisfies V (πσ̃, ρob;µR) ≥
V (πσ̂, ρob;µR) because the full revelation signaling scheme maximizes the receiver’s utility. For
the designer’s utility, by the Lipschitz continuity with respect to π (Lemma 13), we have

U(πσ̃, ρob;µD) ≥ U(πσ̂, ρob;µD)− ∥πfull − πσ̂∥ ≥ U(πσ̂, ρob;µD)− θ,

which satisfies the third claim of Lemma 9.
Case (2): ∥πσ̂ − πfull∥ > θ. In this case, we apply static robustification (Lemma 4) to π to

obtain direct signaling scheme πσ̃. According to the third claim of Lemma 4, ∥πσ̃ − πσ̂∥ ≤ 4δ
p20

, so
by the Lipschitz continuity of the receiver’s utility (Lemma 13),

V (πσ̃, ρob;µR) ≥ V (πσ̂, ρob;µR)− 4δ
p20
.

Consider the convex combination of πσ̃ and πfull with weights 1 − α, α, denoted by πσ̃,α. By the
coalescing lemma (Lemma 15), π̃α automatically satisfies the first claim of Lemma 9. By linearity,
the receiver’s utility satisfies

V (πσ̃,α, ρob;µR)− V (πσ̂, ρob;µR)

= (1− α)
(
V (πσ̃, ρob;µR)− V (πσ̂, ρob;µR)

)
+ α

(
V (πfull, ρob;µR)− V (πσ̂, ρob;µR)

)
≥ −(1− α)4δ

p20
+ α · p0Gθ

2
by Claim 6

≥ 0

where we choose α = 8δ
p30Gθ

=
√

8δ
p30G

(α ≤ 1 given δ ≤ p30G

8
). So, πσ̃,α weakly improves the

receiver’s utility compared to π, satisfying the second claim of Lemma 9.
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The designer’s utility under πσ̃,α is

U(πσ̃,α, ρob;µD)

= (1− α)U(π̃, ρob;µD) + αU(πfull, ρob;µD)

≥ (1− α)
(
U(πσ̂, ρob;µD)− 3δ

p0

)
+ 0 by Lemma 4

≥ U(πσ̂, ρob;µD)− 3δ
p0

−
√

8δ
p30G

given α =
√

8δ
p30G

≥ U(πσ̂, ρob;µD)− 3
√

δ
8p0

−
√

8δ
p30G

as δ ≤ p30G

8
=⇒ δ

p0
≤ 1

8

≥ U(πσ̂, ρob;µD)−
√

9δ
8p30G

−
√

8δ
p30G

p0, G ≤ 1

≥ U(πσ̂, ρob;µD)− 4
√

δ
p30G

,

which proves the lemma.

Claim 6. ∥πσ̂ − πfull∥ > θ =⇒ V (πfull, ρob;µR)− V (πσ̂, ρob;µR) >
p0Gθ
2

,

Proof. For any state ω ∈ Ω, define the difference

∆(ω) := v(a∗ω, ω)−
∑
a

πσ̂(a | ω)v(a, ω) =
∑
a̸=a∗ω

πσ̂(a | ω)
(
v(a∗ω, ω)− v(a, ω)

)
≥ G

(
1− πσ̂(a

∗
ω | ω)

)
= G

2

∥∥πσ̂(·|ω)− πfull(·|ω)
∥∥
1

The condition ∥πσ̂−πfull∥ > θ implies ∃ ω̄ ∈ Ω with ∥πσ̂(·|ω)−πfull(·|ω)∥1 > θ, hence ∆(ω̄) ≥ Gθ
2

.
Therefore,

V (πfull, ρob;µR)− V (πσ̂, ρob;µR) =
∑
ω

µR(ω)∆(ω) ≥ µR(ω̄)∆(ω̄) ≥ p0Gθ
2

.

D.2 PROOF OF THEOREM 2

Proof of Theorem 2. We convert σ̂ = (π
(1)
σ̂ , . . . , π

(T )
σ̂ ) to σ̃ = (π

(1)
σ̃ , . . . , π

(T )
σ̃ ) by applying utility-

improving robustification (Lemma 9) to the direct signaling schemes of σ in the backward order:
namely, from π(T ) to π(1).

Specifically, for each period t ≤ T , having robustified π
(T )
σ̂ , . . . , π

(t+1)
σ̂ , we robustify π

(t)
σ̂ so

that (π(t)
σ̃ , π

(t+1)
σ̃ , . . . , π

(T )
σ̃ ) is dynamically persuasive with respect to µR satisfying ∥µR− µ̂∥1 ≤ ε.
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In particular, we want the following to hold: for any action a recommended by π
(t)
σ̃ and any a′ ∈ A,

γtE
ω∼µR(·|a,π(t)

σ̃ )

[
v(a, ω)− v(a′, ω)

]
+

T∑
t′=t+1

γt′
(
V (π

(t′)
σ̃ , ρob;µR)− Vuninformed(µR)

)
≥ 0. (49)

Applying Lemma 9 to π(t) with parameter δt > 0 (to be chosen later), we obtain another direct sig-
naling scheme π

(t)
σ̃ that satisfies E

ω∼µR(·|a,π(t)
σ̃ )

[
v(a, ω)− v(a′, ω)

]
≥ min

{
E

ω∼µ̂(·|a,π(t)
σ̂ )

[
v(a, ω)−

v(a′, ω)
]
+ δtD − 2ε

p0
, 0
}

. There are two cases:
Case (1): E

ω∼µR(·|a,π(t)
σ̃ )

[
v(a, ω)− v(a′, ω)

]
≥ 0: In this case, by induction, we have

T∑
t′=t+1

γt′
(
V (π

(t′)
σ̃ , ρob;µR)− Vuninformed(µR)

)
≥ 0

because the robustified DDP strategy (π
(t′)
σ̃ )Tt′=t+1 is dynamically persuasive. So, we immediately

obtain (49).
Case (2): E

ω∼µR(·|a,π(t)
σ̃ )

[
v(a, ω)− v(a′, ω)

]
< 0: in this case, by the first claim of Lemma 9,

0 > E
ω∼µR(·|a,π(t)

σ̃ )

[
v(a, ω)− v(a′, ω)

]
≥ E

ω∼µ̂(·|a,π(t)
σ̂ )

[
v(a, ω)− v(a′, ω)

]
+ δtD − 2ε

p0
. (50)

We then consider the receiver’s continuation utility from period t+ 1 to T .

T∑
t′=t+1

γt′
(
V (π

(t′)
σ̃ , ρob;µR)− Vuninformed(µR)

)
≥

T∑
t′=t+1

γt′
(
V (π

(t′)
σ̂ , ρob;µR)− Vuninformed(µR)

)
by the second claim of Lemma 9

≥
T∑

t′=t+1

γt′
(
V (π

(t′)
σ̂ , ρob; µ̂)− Vuninformed(µ̂)− 2∥µR − µ̂∥1

)
V is 1-Lipschitz (Lemma 13)

≥
T∑

t′=t+1

γt′
(
V (π

(t′)
σ̂ , ρob; µ̂)− Vuninformed(µ̂)

)
− γt+1

1−γ
2ε. (51)
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Adding (50) and (51),

γtE
ω∼µR(·|a,π(t)

σ̃ )

[
v(a, ω)− v(a′, ω)

]
+

T∑
t′=t+1

γt′
(
V (π

(t′)
σ̃ , ρob;µR)− Vuninformed(µR)

)
≥ γtE

ω∼µ̂(·|a,π(t)
σ̂ )

[
v(a, ω)− v(a′, ω)

]
+

T∑
t′=t+1

γt′
(
V (π

(t′)
σ̂ , ρob; µ̂)− Vuninformed(µ̂)

)
︸ ︷︷ ︸

≥ 0 because (π
(t)
σ̂ , . . . , π

(T )
σ̂ ) is dynamically persuasive for µ̂

+ γtδtD − γt 2ε
p0

− γt+1

1−γ
2ε

≥ 0

where we choose δt =
(

1
p0

+ γ
1−γ

)
2ε
D

. Thus, (π(t)
σ̃ , π

(t+1)
σ̃ , . . . , π

(T )
σ̃ ) is dynamically persuasive for a

receiver with prior µR. Performing the robustification from t = T to t = 1, we therefore obtain a
DDP strategy σ̃ = (π

(1)
σ̃ , . . . , π

(T )
σ̃ ) that is dynamically persuasive for a receiver with prior µR.

The designer’s T -period total utility under the original DDP strategy σ = (π(1), . . . , π(T )) is
UT (σ, ϕob;µD) =

∑T
t=1 U(π(t), ρob;µD). Under the robustified DDP strategy σ̃ = (π

(1)
σ̃ , . . . , π

(T )
σ̃ ),

the designer’s utility is

UT (σ̃, ϕob;µD) =
T∑
t=1

U(π
(t)
σ̃ , ρob;µD)

≥
T∑
t=1

(
U(π(t), ρob;µD)− 4

√
δt
p30G

)
by the third claim of Lemma 9

= UT (σ, ϕob;µD)− 4T
√(

1
p0

+ γ
1−γ

)
2ε

p30GD
,

which proves Theorem 2.

D.3 PROOF OF LEMMA 10

Proof. Let σ∗
T = (π

(1)
σ∗ , . . . , π

(T )
σ∗ ) be an optimal history-independent DDP strategy for the T -period

game, which returns U∗∗
T (µD, µ̂).

Let σtail = (π
(T−T0+1)
σ∗ , . . . , π

(T )
σ∗ ) be the tail strategy for σ∗

T . Because the DDP strategy ensures
the receiver’s obedience through the continuation incentives that depend only on the future, trun-
cating the first T0 periods does not affect incentives from period T0+1 onward. Thus σtail is a
feasible (T−T0)-period DDP strategy for the same prior.

On the obedient path, the designer’s per-period payoff is U(π(t), ρob;µD) ∈ [0, 1]. Therefore,
the first T0 periods contribute at most T0 to the total:
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U∗∗
T (µD, µ̂) =

T0∑
t=1

U(π
(t)
σ∗ , ρob;µD) +

T∑
t=T0+1

U(π
(t)
σ∗ , ρob;µD) ≤ T0 + U(σtail, ρob;µD)

Maximizing over all feasible (T−T0)-period strategies gives

U∗∗
T−T0

(µD, µ̂) ≥ U(σtail, ρob;µD) ≥ U∗∗
T (µD, µ̂)− T0.

E OMITTED PROOFS IN SECTION 6

E.1 PROOF OF LEMMA 11

We summarize the information design instance here:

I =



designer’s utility: u(a1, ω) = 1, u(a0, ω) = 0, ∀ω ∈ Ω = {ω0, ω1};

receiver’s utility: v(a0, ω0) = 0, v(a0, ω1) = 0, v(a1, ω0) = −1, v(a1, ω1) = 1;

designer’s prior: µD(ω0) = 1− p0, µD(ω1) = p0, 0 < p0 < 1/2;

receiver’s prior: µR(ω0) =
1

1+µ̃R
, µR(ω1) =

µ̃R

1+µ̃R
, 0 ≤ µR ≤ 1.

We present some useful facts before proving Lemma 11. Because µR(ω1) ≤ µR(ω0), the receiver’s
ex-ante utility when receiving no information is

Vuninformed(µR) = max
a∈A

∑
ω∈Ω

µR(ω)v(a, ω) = max
{

0︸︷︷︸
a0’s utility

, µR(ω1)− µR(ω0)︸ ︷︷ ︸
a1’s utility

}
= 0. (52)

When the designer uses a direct signaling scheme π : Ω → ∆(A), the ex-ante utility of an obedient
receiver is

V (π, ρob;µR) =
∑
ω∈Ω

µR(ω)
∑
a∈A

π(a|ω)v(a, ω) = −µR(ω0)π(a1|ω0) + µR(ω1)π(a1|ω1), (53)

and the ex-ante utility of the designer is

U(π, ρob;µD) =
∑
ω∈Ω

µR(ω)
∑
a∈A

π(a|ω)u(a, ω) = (1− p0)π(a1|ω0) + p0π(a1|ω1). (54)
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The persuasiveness constraints for a direct signaling scheme π are:

(for a0) Eω∼µR(·|a0,π)
[
v(a0, ω)− v(a1, ω)

]
=

µR(ω0)π(a0|ω0)− µR(ω1)π(a0|ω1)

µR(ω0)π(a0|ω0) + µR(ω1)π(a0|ω1)
≥ 0; (55)

(for a1) Eω∼µR(·|a1,π)
[
v(a1, ω)− v(a0, ω)

]
=

−µR(ω0)π(a1|ω0) + µR(ω1)π(a1|ω1)

µR(ω0)π(a1|ω0) + µR(ω1)π(a1|ω1)
≥ 0;

(56)

The Bayesian persuasion benchmark U∗
BP(I) is the designer’s optimal utility from a persuasive

direct signaling scheme:

U∗
BP(I) = max

π:Ω→∆(A)
U(π, ρob;µD)

s.t. (for a0) µR(ω0)π(a0|ω0)− µR(ω1)π(a0|ω1) ≥ 0;

(for a1) − µR(ω0)π(a1|ω0) + µR(ω1)π(a1|ω1) ≥ 0.

Claim 7. U∗
BP(I) = (1− p0)µ̃R + p0.

Proof. In the U∗
BP(I) optimization problem, the persuasiveness constraint for a0

µR(ω0)π(a0|ω0)− µR(ω1)π(a0|ω1) = µR(ω0)
(
1− π(a1|ω0)

)
− µR(ω1)

(
1− π(a1|ω1)

)
= µR(ω0)− µR(ω1)︸ ︷︷ ︸

≥0 by construction

−µR(ω0)π(a1|ω0) + µR(ω1)π(a1|ω1)︸ ︷︷ ︸
≥0 when a1 is persuasive

≥ 0

is automatically satisfied when a1 is persuasive. So, we can drop the persuasiveness constraint for
a0 and write the optimization problem as

U∗
BP(I) = max

π:Ω→∆(A)
(1− p0)π(a1|ω0) + p0π(a1|ω1)

s.t. − µR(ω0)π(a1|ω0) + µR(ω1)π(a1|ω1) ≥ 0.

The solution to the above optimization problem is clearly π(a1|ω1) = 1 and π(a1|ω0) =
µR(ω1)
µR(ω0)

=

µ̃R, with optimal objective value U∗
BP(I) = (1− p0)µ̃R + p0.

To prove Lemma 11, we analyze the designer’s global benchmark U∗∗
T (I). According to

Lemma ??, the global benchmark U∗∗
T (I) can be achieved by some history-independent dynami-
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cally persuasive DDP strategy σ = (π(1), . . . , π(T )):

U∗∗
T (I) = max

σ = (π(1), . . . , π(T ))

T∑
t=1

U(π(t), ρob;µD)

subject to ∀t ∈ {1, . . . , T}, ∀a, a′ ∈ A,

γtEω∼µR(·|a,π(t))

[
v(a, ω)− v(a′, ω)

]
+

T∑
t′=t+1

γt′
(
V (π(t′), ρob;µR)− Vuninformed(µR)

)
≥ 0.

Plugging in Equations (52)-(56), we obtain

U∗∗
T (I) = max

σ = (π(1), . . . , π(T ))

T∑
t=1

(
(1− p0)π

(t)(a1|ω0) + p0π
(t)(a1|ω1)

)
subject to ∀t ∈ {1, . . . , T},

γt
µR(ω0)π

(t)(a0|ω0)− µR(ω1)π
(t)(a0|ω1)

µR(ω0)π(t)(a0|ω0) + µR(ω1)π(t)(a0|ω1)
+

T∑
t′=t+1

γt′
(
− µR(ω0)π

(t′)(a1|ω0) + µR(ω1)π
(t′)(a1|ω1)

)
≥ 0,

γt
−µR(ω0)π

(t)(a1|ω0) + µR(ω1)π
(t)(a1|ω1)

µR(ω0)π(t)(a1|ω0) + µR(ω1)π(t)(a1|ω1)
+

T∑
t′=t+1

γt′
(
− µR(ω0)π

(t′)(a1|ω0) + µR(ω1)π
(t′)(a1|ω1)

)
≥ 0,

and
T∑

t′=t+1

γt′
(
− µR(ω0)π

(t′)(a1|ω0) + µR(ω1)π
(t′)(a1|ω1)

)
≥ 0.

We note that the optimal solution to the above problem must have π(t)(a1|ω1) = 1 for ev-
ery t. This is because: (1) increasing π(t)(a1|ω1) increases the designer’s utility; (2) increasing
π(t)(a1|ω1) will not violate the three constraints because the right-hand-sides of the constraints
are all increasing in π(t)(a1|ω1). Note that in first constraint, the right-hand-side is decreasing in
π(t)(a0|ω1) while π(t)(a0|ω1) = 1 − π(t)(a1|ω1) is decreasing in π(t)(a1|ω1). So, we can increase
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π(t)(a1|ω1) to the maximal value of 1. With π(t)(a1|ω1) = 1, we can rewrite U∗∗
T (I) as

U∗∗
T (I) = max

σ = (π(1), . . . , π(T ))

T∑
t=1

(
(1− p0)π

(t)(a1|ω0) + p0

)
s.t. γt

µR(ω0)π
(t)(a0|ω0)− 0

µR(ω0)π(t)(a0|ω0) + 0
+

T∑
t′=t+1

γt′
(
− µR(ω0)π

(t′)(a1|ω0) + µR(ω1)
)
≥ 0,

γt
−µR(ω0)π

(t)(a1|ω0) + µR(ω1)

µR(ω0)π(t)(a1|ω0) + µR(ω1)
+

T∑
t′=t+1

γt′
(
− µR(ω0)π

(t′)(a1|ω0) + µR(ω1)
)
≥ 0,

and
T∑

t′=t+1

γt′
(
− µR(ω0)π

(t′)(a1|ω0) + µR(ω1)
)
≥ 0.

Because µR(ω0)π(t)(a0|ω0)−0

µR(ω0)π(t)(a0|ω0)+0
= 1, the first constraint is implied by the third constraint. So we can

drop the first constraint. Letting x(t) = π(t)(a1|ω0), we have

U∗∗
T (I) = max

0≤x(t)≤1

T∑
t=1

(
(1− p0)x

(t) + p0

)
or equivalently max

0≤x(t)≤1

T∑
t=1

x(t) (57)

s.t. γt
−µR(ω0)x

(t) + µR(ω1)

µR(ω0)x(t) + µR(ω1)
+

T∑
t′=t+1

γt′
(
− µR(ω0)x

(t′) + µR(ω1)
)
≥ 0, (58)

and
T∑

t′=t+1

γt′
(
− µR(ω0)x

(t′) + µR(ω1)
)
≥ 0. (59)

Claim 8. A solution to the optimization problem (57)-(59) is x(t) = µR(ω1)
µR(ω0)

for every t ∈ {1, . . . , T}.

Proof. We prove this claim by induction on T . When T = 1, the optimization problem becomes

max
0≤x(1)≤1

x(1)

s.t. γ1
−µR(ω0)x

(1) + µR(ω1)

µR(ω0)x(1) + µR(ω1)
≥ 0,

which is clearly maximized by x(1) = µR(ω1)
µR(ω0)

.
Consider T ≥ 2. Let x = (x(t))Tt=1 be any feasible solution where x(T ) < µR(ω1)

µR(ω0)
. We define

x̃ = (x̃(t))Tt=1 by

x̃(T ) = µR(ω1)
µR(ω0)

, x̃(T−1) = x(T−1) − γT
γT−1

(µR(ω1)
µR(ω0)

− x(T )
)
, x̃(t) = x(t) ∀t ≤ T − 2.

We show that x̃ is feasible and has a weakly larger objective value than x. To verify the feasibility
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of x̃, we verify the first constraint (58) for every t:

• For t ≤ T − 2, we have

γt
−µR(ω0)x̃

(t) + µR(ω1)

µR(ω0)x̃(t) + µR(ω1)
+

T∑
t′=t+1

γt′
(
− µR(ω0)x̃

(t′) + µR(ω1)
)

= γt
−µR(ω0)x

(t) + µR(ω1)

µR(ω0)x(t) + µR(ω1)
+

T−2∑
t′=t+1

γt′
(
− µR(ω0)x

(t′) + µR(ω1)
)

+ γT−1

(
− µR(ω0)x̃

(T−1) + µR(ω1)
)
+ γT · 0

= γt
−µR(ω0)x

(t) + µR(ω1)

µR(ω0)x(t) + µR(ω1)
+

T−2∑
t′=t+1

γt′
(
− µR(ω0)x

(t′) + µR(ω1)
)

+ γT−1

(
− µR(ω0)

(
x(T−1) − γT

γT−1

(µR(ω1)
µR(ω0)

− x(T )
))

+ µR(ω1)
)

= γt
−µR(ω0)x

(t) + µR(ω1)

µR(ω0)x(t) + µR(ω1)
+

T−2∑
t′=t+1

γt′
(
− µR(ω0)x

(t′) + µR(ω1)
)

+ γT−1

(
− µR(ω0)x

(T−1) + µR(ω1)
)
+ γT

(
− µR(ω0)x

(T ) + µR(ω1)
)

≥ 0

where the “≥ 0” is because x satisfies (58).

• For t = T − 1, we have

γt
−µR(ω0)x̃

(t) + µR(ω1)

µR(ω0)x̃(t) + µR(ω1)
+

T∑
t′=t+1

γt′
(
− µR(ω0)x̃

(t′) + µR(ω1)
)

= γT−1
−µR(ω0)x̃

(T−1) + µR(ω1)

µR(ω0)x̃(T−1) + µR(ω1)
+ γT · 0

= γT−1

−µR(ω0)
(
x(T−1) − γT

γT−1

(µR(ω1)
µR(ω0)

− x(T )
))

+ µR(ω1)

µR(ω0)x̃(T−1) + µR(ω1)

=
γT−1

(
− µR(ω0)x

(T−1) + µR(ω1)
)
+ γT

(
− µR(ω0)x

(T ) + µR(ω1)
)

µR(ω0)x̃(T−1) + µR(ω1)

≥ 0

where the “≥ 0” is because x satisfies (59).
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• For t = T , we have

γt
−µR(ω0)x̃

(T ) + µR(ω1)

µR(ω0)x̃(T ) + µR(ω1)
= 0 ≥ 0.

Thus, x̃ satisfies the first constraint (58). One can similarly verify that x̃ satisfies the second
constraint (59). We then show that x̃ has a weakly larger objective value than x:

T∑
t=1

x̃(t) =
T−2∑
t=1

x(t) + x(T−1) − γT
γT−1

(µR(ω1)
µR(ω0)

− x(T )
)
+ µR(ω1)

µR(ω0)

≥
T−2∑
t=1

x(t) + x(T−1) −
(µR(ω1)
µR(ω0)

− x(T )
)
+ µR(ω1)

µR(ω0)

=
T∑
t=1

x(t).

Since x̃ is feasible and weakly better than x, we can safely set x(T ) = µR(ω1)
µR(ω0)

and reduce the
optimization problem to the T − 1 period problem:

max
0≤x(t)≤1

T−1∑
t=1

x(t)

s.t. γt
−µR(ω0)x

(t) + µR(ω1)

µR(ω0)x(t) + µR(ω1)
+

T−1∑
t′=t+1

γt′
(
− µR(ω0)x

(t′) + µR(ω1)
)
≥ 0,

and
T−1∑

t′=t+1

γt′
(
− µR(ω0)x

(t′) + µR(ω1)
)
≥ 0.

By induction, the T − 1 period problem has solution
(
x(t) = µR(ω1)

µR(ω0)

)T−1

t=1
. Thus, the T period

problem has solution
(
x(t) = µR(ω1)

µR(ω0)

)T
t=1

.

By Claim 8, we have x(t) = µR(ω1)
µR(ω0)

and thus

U∗∗
T (I) =

T∑
t=1

(
(1− p0)

µR(ω1)
µR(ω0)

+ p0

)
= T ·

(
(1− p0)µ̃R + p0

)
by Claim 7

= T · U∗
BP(I),

which proves Lemma 11.
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E.2 PROOF OF LEMMA 12

Given an incentive compatible and individually rational menu M = {πµ}, the receiver will re-
port his prior µR truthfully. Consider a weighted welfare of the game, which is the sum of the
information designer’s utility and (1 + µ̃R) times the receiver’s utility:

U sp(M, µR) + (1 + µ̃R)V
sp(µR, µR)

= (1− p0)πµR
(a1|ω0) + p0πµR

(a1|ω1) + µ̃RπµR
(a1|ω1)− π(a1|ω0)

= (µ̃R + p0)πµR
(a1|ω1)− p0πµR

(a1|ω0). (60)

Replacing µR by µ (and replacing µ̃R by µ̃) in (60) and noting that V sp(µ, µ) ≥ Vuninformed ≥ 0 by
individual rationality, we have

U sp(M, µ) ≤ (µ̃+ p0)πµ(a1|ω1)− p0πµ(a1|ω0). (61)

The information designer’s single-period regret

Regsp(M, µR) = (1− p0)µ̃R + p0 − U sp(M, µR)

≥ πµR
(a1|ω1) ·

(
(1− p0)µ̃R + p0

)
− U sp(M, µR)

= (µ̃R + p0)πµR
(a1|ω1)− U sp(M, µR)− p0µ̃RπµR

(a1|ω1)

by (60) = (1 + µ̃R)V
sp(µR, µR) + p0πµR

(a1|ω0)− p0µ̃RπµR
(a1|ω1)

incentive compatibility ≥ (1 + µ̃R)V
sp(µR, µ) + p0πµR

(a1|ω0)− p0µ̃RπµR
(a1|ω1)

= (1 + µ̃R)
1

1 + µ̃R

(
µ̃Rπµ(a1|ω1)− πµ(a1|ω0)

)
+ p0πµR

(a1|ω0)− p0µ̃RπµR
(a1|ω1)

by (61) ≥
(

µ̃R

µ̃+ p0

(
U sp(M, µ) + p0πµ(a1|ω0)

)
− πµ(a1|ω0)

)
+ p0πµR

(a1|ω0)− p0µ̃RπµR
(a1|ω1)

by (32) =
(

µ̃R

µ̃+ p0

(
U sp(M, µ) + p0πµ(a1|ω0)

)
− U sp(M, µ)− p0πµ(a1|ω0) + p0πµ(a1|ω1)

)
+ p0πµR

(a1|ω0)− p0µ̃RπµR
(a1|ω1)

=
µ̃R − µ̃− p0

µ̃+ p0
U sp(M, µ)

+ p0

(
µ̃R − µ̃− p0

µ̃+ p0
πµ(a1|ω0) + πµ(a1|ω1) + πµR

(a1|ω0)− µ̃RπµR
(a1|ω1)

)
≥ µ̃R − µ̃− p0

µ̃+ p0
U sp(M, µ) + p0

(
µ̃R − µ̃− p0

µ̃+ p0
πµ(a1|ω0)− µ̃R

)
.
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Let µ̃R = 1 and µ̃ = 1
2
− p0. If Regsp(M, µR) ≥ 1

4
, then the lemma is proved. If Regsp(M, µR) <

1
4
, then we have

1

4
> Regsp(M, µR) ≥ U sp(M, µ) + p0

(
πµ(a1|ω0)− 1

)
≥ U sp(M, µ)− p0,

which implies that the information designer’s regret under receiver prior µ is

Regsp(M, µ) = (1− p0)µ̃+ p0 − U sp(M, µ)

≥ (1− p0)(
1

2
− p0) + p0 −

1

4
− p0 ≥

1

4
− 3

2
p0 ≥

1

16

given p0 =
1
8
. Using µ(ω0) =

1
1+µ̃

and µ(ω1) =
µ̃

1+µ̃
, by direct calculation, one can verify that the

condition µ(ω) ≥ p0, ∀ω ∈ Ω, is satisfied. So, the lemma holds with µ̃.

E.3 PROOF OF THEOREM 4

Let G be any learning algorithm of the information designer. Recall that a strategic receiver with
prior µR best responds by using T -period strategy ϕ∗(G, µR) = (ϕ(t))Tt=1, where each ϕ(t) maps
the history H(t−1) and the current period signaling scheme π(t) to a current period strategy ρ(t) :

S → ∆(A) which specifies a distribution over actions for each possible signal. The sequence
(π(t), ρ(t))Tt=1 of signaling schemes and the receiver’s single-period strategies is a stochastic process
generated by G and ϕ∗(G, µR). Let σµR

(a|ω) be the “average probability” that the receiver takes
action a conditioning on state ω when the receiver uses ϕ∗(G, µR) to interact with the designer’s
algorithm G, weighted by the receiver’s discount factor:

σµR
(a|ω) = E(π(t),ρ(t))∼G,ϕ∗(G,µR)

[
1

Tγ

T∑
t=1

γt
∑
s∈S

π(t)(s|ω)ρ(t)(a|s)
]
, (62)

where Tγ :=
∑T

t=1 γt. Note that σµR
(·|ω) is a distribution over A, so σµR

can be regarded as
a direct signaling scheme. Consider the menu M = {σµR

}µR∈∆(Ω) of direct signaling schemes
σµR

associated with any prior µR. We claim that the M is incentive compatible and individually
rational in the single-period game.

Claim 9. The menu M = {σµR
}µR∈∆(Ω) is incentive compatible and individually rational.

Proof. Under menu M, the receiver’s expected utility with prior µR and a report µ in the single-
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period is

V sp(M, µR, µ) =
∑
ω∈Ω

µR(ω)
∑
a∈A

σµ(a|ω)v(a, ω)

= E(π(t),ρ(t))∼G,ϕ∗(G,µ)

[
1

Tγ

T∑
t=1

γt
∑
ω∈Ω

µR(ω)
∑
s∈S

π(t)(s|ω)
∑
a∈A

ρ(t)(a|s)v(a, ω)
]

≤ E(π(t),ρ(t))∼G,ϕ∗(G,µR)

[
1

Tγ

T∑
t=1

γt
∑
ω∈Ω

µR(ω)
∑
s∈S

π(t)(s|ω)
∑
a∈A

ρ(t)(a|s)v(a, ω)
]

= V sp(M, µR, µR),

where the ≤ is because ϕ∗(G, µR) is a best response to G for a strategic receiver with prior µR in
the T -period game. So, M is incentive compatible. By a similar argument, one can verify that M
is individually rational. So the claim is proven.

Then, we relate the designer’s regret in the single-period game to her regret in the T -period
game:
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TγReg
sp(M, µR)

= Tγ

[
U∗(µR)− U sp(M, µR)

]
= Tγ

[
U∗(µR)−

∑
ω∈Ω

µD(ω)
∑
a∈A

σµR
(a|ω)u(a, ω)

]

= TγU
∗(µR)− E(π(t),ρ(t))∼G,ϕ∗(G,µR)

[ T∑
t=1

γt
∑
ω∈Ω

µD(ω)
∑
s∈S

π(t)(s|ω)
∑
a∈A

ρ(t)(a|s)u(a, ω)
]

= TU∗(µR)− (T − Tγ)U
∗(µR)

− E(π(t),ρ(t))∼G,ϕ∗(G,µR)

[ T∑
t=1

(1− 1 + γt)
∑
ω∈Ω

µD(ω)
∑
s∈S

π(t)(s|ω)
∑
a∈A

ρ(t)(a|s)u(a, ω)
]

= TU∗(µR)− E(π(t),ρ(t))∼G,ϕ∗(G,µR)

[ T∑
t=1

∑
ω∈Ω

µD(ω)
∑
s∈S

π(t)(s|ω)
∑
a∈A

ρ(t)(a|s)u(a, ω)
]

− (T − Tγ)U
∗(µR) + E(π(t),ρ(t))∼G,ϕ∗(G,µR)

[ T∑
t=1

(1− γt)
∑
ω∈Ω

µD(ω)
∑
s∈S

π(t)(s|ω)
∑
a∈A

ρ(t)(a|s)u(a, ω)
]

= Reg(G;µD, µR)

− E(π(t),ρ(t))∼G,ϕ∗(G,µR)

[ T∑
t=1

(1− γt)
(
U∗(µR)−

∑
ω∈Ω

µD(ω)
∑
s∈S

π(t)(s|ω)
∑
a∈A

ρ(t)(a|s)u(a, ω)
)]

︸ ︷︷ ︸
A

.

Then, we want to show A ≥ 0. According to the definition of utility (30) (32) in the two-state,
two-action single-period game defined previously,

U∗(µR)−
∑
ω∈Ω

µD(ω)
∑
s∈S

π(t)(s|ω)
∑
a∈A

ρ(t)(a|s)u(a, ω)

= (1− p0)µ̃R + p0 − (1− p0)
∑
s∈S

π(t)(s|ω0)ρ
(t)(a1|s)− p0

∑
s∈S

π(t)(s|ω1)ρ
(t)(a1|s)

= (1− p0)
(
µ̃R −

∑
s∈S

π(t)(s|ω0)ρ
(t)(a1|s)

)
+ p0

(
1−

∑
s∈S

π(t)(s|ω1)ρ
(t)(a1|s)

)
≥ (1− p0)(1 + µ̃R)V

sp(π(t), ρ(t)) + 0,

where V sp(π(t), ρ(t)) = 1
1+µ̃R

(
µ̃R

∑
s∈S π

(t)(s|ω1)ρ
(t)(a1|s)−

∑
s∈S π

(t)(s|ω0)ρ
(t)(a1|s)

)
is the re-

ceiver’s single-period utility under signaling scheme π(t) and responding strategy ρ(t). The follow-
ing lemma shows that E[

∑T
t=1(1− γt)V

sp(π(t), ρ(t))] ≥ 0. Note that this lemma is not immediate
because the receiver’s utility can be negative in some periods. See Appendix E.4 for the proof of
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this lemma.

Lemma 19. Assume that the receiver’s discount factor sequence satisfies 1 ≥ γt ≥ 0 and

γt ≥ γt+1, ∀t. For any learning algorithm G of the information designer, with the receiver best

responding by ϕ∗(G, µR), we have E[
∑T

t=1(1− γt)V
sp(π(t), ρ(t))] ≥ 0.

So, we obtain

A ≥ (1− p0)(1 + µ̃R)E
[ T∑

t=1

(1− γt)V
sp(π(t), ρ(t))

]
≥ 0,

which implies
Reg(G;µD, µR) ≥ TγReg

sp(M, µR).

By Lemma 12, there exists an instance where Regsp(M, µR) ≥ 1
16

, so Reg(G;µD, µR) ≥ 1
16
Tγ .

E.4 PROOF OF LEMMA 19

In this proof, the expectation is over the stochastic process {(π(t), ρ(t))}Tt=1 generated by G and
ϕ∗(G, µR). Let

E[V sp(π(t), ρ(t))] = E
[

1

1 + µ̃R

(
µ̃R

∑
s∈S

π(t)(s|ω1)ρ
(t)(a1|ω1)−

∑
s∈S

π(t)(s|ω0)ρ
(t)(a1|ω0)

)]

be the receiver’s expected utility at period t, where the signaling scheme is π(t) and the receiver
responds by strategy ρ(t). Denote the receiver’s discounted and undiscounted total utility from
period t1 to t2 by

DV (t1, t2) =

t2∑
t=t1

γtE[V sp(π(t), ρ(t))], UV (t1, t2) =

t2∑
t=t1

E[V sp(π(t), ρ(t))].

We will use an induction to prove 0 ≤ DV (t, T ) ≤ γtUV (t, T ) for every t ∈ {1, . . . , T, T+1}.
The base case where t = T + 1 trivially holds. Consider any t ≤ T . First, we have DV (t, T ) ≥∑T

t′=1 γt′Vuninformed ≥ 0 because the receiver is best-responding using ϕ∗(G, µR) and he can always
guarantee the uninformed utility by ignoring the signals. We then note that

DV (t, T ) = DV (t, t) +DV (t+ 1, T )

= γtUV (t, t) +DV (t+ 1, T )

≤ γtUV (t, t) + γt+1UV (t+ 1, T ) by induction.
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Because γt ≥ γt+1 and UV (t+ 1, T ) ≥ γt+1DV (t+ 1, T ) ≥ 0 by induction, we have

DV (t, T ) ≤ γtUV (t, t) + γtUV (t+ 1, T ) = γtUV (t, T ),

which proves the induction.
For t = 1, γt ≤ 1, so DV (1, T ) ≤ γ1UV (1, T ) ≤ UV (1, T ), which implies

0 ≤ UV (1, T )−DV (1, T ) = E
[ T∑

t=1

(1− γt)V
sp(π(t), ρ(t))

]
and proves the lemma.
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